
Symposium on Foundations and
Applications of Blockchain

Proceedings

Sumita Barahmand
Shahram Ghandeharizadeh
Bhaskar Krishnamachari

University of Southern California
Los Angeles, California
March 9, 2018

I

Message from the Chairs

The first Symposium on Foundations and Applications of Blockchain (FAB) brings together
researchers and practitioners of blockchain to share and exchange research results. This one-day
event is held at the beautiful campus of the University of Southern California, Los Angeles, CA,
on March 9, 2018.

The program consists of six exciting refereed technical papers from around the world, a keynote
by Professor Charalampos Papamanthou entitled "Applications of Verifiable Computation in
Blockchains and Cryptocurrencies", a timely panel on future of blockchain, as well as poster and
lightning talk sessions. The technical papers are given a 25 minutes presentation time with 5
minutes for questions. They were selected through a rigorous review process with 3 to 4 reviews
per paper.

One of the technical papers titled "Unchain Your Blockchain" stood out and has been identified as
the best paper award. We congratulate the authors for their timely technical contribution. The
runner-up paper receiving the honorable mention is titled "Collaboration Among
Adversaries: Distributed Workflow Execution on a Blockchain". Authors of both papers received
certificates with the best paper receiving a trophy.

We thank our international program committee and the industrial sponsors. Our special thanks go
to Heidi Pease for serving as the industrial chair, A.J. Nachikethas as the webmaster, and Brienne
Jessica Moore for her logistical support of the event. Finally, we wish to thank the authors for
their contributions and the panelists for an exciting discussion of the future of blockchain.

Sumita Barahmand, Proceedings Chair
Shahram Ghandeharizadeh, Program Chair
Bhaskar Krishnamachari, General Chair

II

Table of Contents

FAB 2018 Conference Organization ..III
FAB 2018 Conference Sponsors .. IV

Keynote
• Applications of Verifiable Computation in Blockchains and Cryptocurrencies 1

 Charalampos (Babis) Papamanthou (University of Maryland, College Park)

Technical Session 1
• Experiences from the Field: Unify Rewards - A Cryptocurrency Loyalty Program 2

 Philip Shelper (LoyaltyX), Andrew Lowe (PicoLabs),
 Salil S. Kanhere (UNSW Sydney)

• Collaboration among Adversaries: Distributed Workflow Execution on a
Blockchain ... 8

 Mads Frederik Madsen (IT University of Copenhagen),
 Mikkel Gaub (IT University of Copenhagen),
 Tróndur Høgnason (IT University of Copenhagen),
 Malthe Ettrup Kirkbro (IT University of Copenhagen),
 Tijs Slaats (University of Copenhagen),
 Søren Debois (IT University of Copenhagen)

• Unchain Your Blockchain .. 16
 Tamraparni Dasu (AT&T Labs-Research), Yaron Kanza (AT&T Labs-Research),
 Divesh Srivastava (AT&T Labs-Research)

Technical Session 2
• Blockchain Protocols: The Adversary is in the Details ... 24

 Rachid Guerraoui (EPFL), Matej Pavlovic (EPFL),
 Dragos-Adrian Seredinschi (EPFL)

• A Case Study for Grain Quality Assurance Tracking based on a Blockchain Business
Network ... 31

 Percival Lucena (IBM Research), Alécio P. D. Binotto (IBM Research),
 Fernanda da Silva Momo (UFRGS), Henry Kim (York University)

• Towards Trusted Social Networks with Blockchain Technology 37
 Yize Chen (University of Washington), Quanlai Li (University of California, Berkeley),
 Hao Wang (University of Washington)

Author Index .. 43

III

FAB 2018 Conference Organization

General Chair: Bhaskar Krishnamachari (University of Southern

California)

Program Chair: Shahram Ghandeharizadeh (University of Southern
California)

Industrial chair: Heidi Pease (LA Blockchain Lab and Proof of Art)

Proceedings chair: Sumita Barahmand (Microsoft)

Web chair: Nachikethas A. Jagadeesan (University of Southern
California)

Program Committee Members: Daniel Augot (INRIA)
Sumita Barahmand (Microsoft)
Luis Bathen (IBM Research)
Yu Chen (State University of New York – Binghamton)
Bhagwan Chowdhry (UCLA)
Eric Chung (DApperNetwork)
Ming-Deh Huang (University of Southern California)
Eric Diehl (Sony Pictures Entertainment)
Abdelkader Hameurlain (Paul Sabatier University,
Toulouse, France)
Stephen Holmes (Virtusa)
Zhiyuan Jiang (Tsinghua University)
Lou Kerner (Flight VC)
Genevieve Leveille (Otentic8)
Chen Li (UC Irvine)
David MacFadyen (UCLA)
Beng Chin Ooi (National University of Singapore)
Avinash Sridharan (Mesosphere)
Vassilis J. Tsotras (UC Riverside)
Nick Vyas (University of Southern California)
Li Xiong (Emory University)
Kiran Yedavalli (Cisco)

IV

FAB 2018 Conference Sponsors

University Sponsors

Industry Sponsors

Silver Sponsors:

Bronze Sponsors:

Applications of Verifiable Computation in Blockchains and Cryptocurrencies

Charalampos (Babis) Papamanthou

Assistant Professor

Department of Electrical and Computer Engineering and Institute for Advanced Computer Studies

University of Maryland, College Park

Abstract

Decentralized cryptocurrencies and smart contracts (e.g., Bitcoin and Ethereum) promise to
revolutionize financial industries, forever changing the way money is transferred. They support
monetary transactions based on programmable logic between users without requiring to trust a
central authority (e.g., a government or a bank). At the heart of their design lies the blockchain, a
distributed data structure that is stored and agreed upon by the participating parties and which is
readily accessible to anyone in the world. However, due to its size and public nature, several
scalability, security and privacy concerns have emerged. In this talk I will show how we can use
protocols for verifiable computation (cryptographic techniques that enable an untrusted party to
efficiently prove the validity of a statement to a verifier), to address these problems.

Bio

Charalampos (Babis) Papamanthou is an assistant professor of Electrical and Computer
Engineering at the University of Maryland, College Park, where he joined in 2013 after a postdoc
at UC Berkeley. At Maryland, he is also affiliated with the Institute for Advanced Computer
Studies (UMIACS), where he is a member of the Maryland Cybersecurity Center (MC2). He works
on applied cryptography and computer security---and especially on technologies, systems and
theory for secure and private cloud computing. While at College Park, he received the NSF
CAREER award, the Google Faculty Research Award, the Yahoo! Faculty Research Engagement
Award, the NetApp Faculty Fellowship, the 2013 UMD Invention of the Year Award, the 2014
Jimmy Lin Award for Invention and the George Corcoran Award for Excellence in Teaching. His
research is currently funded by federal agencies (NSF, NIST and NSA) and by the industry
(Google, Yahoo!, NetApp and Amazon). His PhD is in Computer Science from Brown University
(2011) and he also holds an MSc in Computer Science from the University of Crete (2005), where
he was a member of ICS-FORTH. His work has received over 3,000 citations and he has published
in venues and journals spanning theoretical and applied cryptography, systems and database
security, graph algorithms and visualization and operations research.

1

Experiences from the Field: Unify Rewards - A
Cryptocurrency Loyalty Program

Philip Shelper
Chief Executive Officer

LoyaltyX

Sydney, Australia

philip.shelper@loyaltyx.co

Andrew Lowe
 Managing Director

PicoLabs

Sydney, Australia

andrew.l@picolabs.co

Salil S. Kanhere
School of Computer Science and

Engineering
UNSW Sydney

Sydney, Australia

salil.kanhere@unsw.edu.au

ABSTRACT
The emergence of cryptocurrencies has created new
opportunities for loyalty programs. In this paper, we present
a proof-of-concept cryptocurrency loyalty program called
Unify Rewards where participants earned Ether
cryptocurrency by making purchases at participating
retailers. We outline the experiences gained from conducting
a field trial of the program with student and staff at UNSW
Sydney. The results from the trial which included 177
participants suggests that cryptocurrency is a viable
alternative to loyalty miles and points.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce –
cybercash, digital cash, distributed commercial
transactions, payment schemes.

Keywords
Cryptocurrency, Ether, Blockchain, Blockchain Loyalty,
Loyalty Program, Field Trial

1. INTRODUCTION
The invention of blockchain and cryptocurrencies has
inadvertently created an opportunity for a paradigm shift in
loyalty program design.
From the 1980’s until present day, the dominant currencies
within loyalty programs have been ‘miles’ or ‘points’. This
has been adopted by major coalition programs generating
billions of dollars of revenue per annum, as well as
individual retailers with niche programs, and everything in
between. Creating a currency which can be controlled by an
organization has become a very useful tool for customer
engagement, and a viable alternative to product discounting.

Even so, miles and points have limitations which restrict
their attractiveness to consumers; they expire, they can only
be redeemed on a limited reward range, and the value can be
manipulated by the issuer to increase profits.
With the rise of Bitcoin [1] and other cryptocurrencies, a
number of specialized Blockchain loyalty companies have
been created. These include Gatcoin, CampusCoin, Nexxus
Rewards, LoyalCoin and EzToken. These companies tend to
follow a similar business design; create a new
cryptocurrency, raise funding via an Initial Coin Offering,
build a loyalty platform, float the cryptocurrency on an
exchange so it can be traded, then seek merchants and
members to generate demand for the cryptocurrency to drive
up the value. Many of the companies have positioned their
approach as one which will disrupt the loyalty industry.
With millions of dollars being invested in these companies,
numerous questions arise; Is cryptocurrency a viable
alternative for miles or points in a modern loyalty program?
Would offering cryptocurrency to members drive deeper
engagement with the program than offering miles or points?
Does a cryptocurrency-based loyalty program have the
potential to disrupt the loyalty industry? Would consumers
view cryptocurrencies as any different to cash?
To answer these questions, we designed a proof-of-concept
loyalty program called Unify Rewards and tested it in the
real-world on the UNSW Sydney campus. Students and staff
of UNSW Sydney were invited to join the program, where
by transacting with a choice of 12 campus retailers, they
earned Ether cryptocurrency over a 5-week period.
The results from the trial which included over 170
participants indicate cryptocurrencies can indeed act as an
effective substitute for loyalty points, with evidence
indicating they have the potential to drive much deeper
engagement with a program by solving a number of the
limitations inherent in miles and points-based programs.
The rest of the paper is organized as follows. Section 2
provides a history of loyalty programs. Section 3 presents
motivating arguments for using cryptocurrencies in loyalty
programs. Section 5 presents an overview of the Unify

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and FAB 2018.
Symposium on Foundations and Applications of Blockchain (FAB ‘18)
March 9, 2018, Los Angeles, California, USA.

2

Rewards systems. Section 5 summarizes the evaluations
from our field trial. Section 6 makes concluding remarks.

2. BACKGROUND
Egyptologists have uncovered evidence that ancient
Egyptians practiced a type of reward program similar to
modern frequent flyer programs, including status tiers and
the ability to redeem on a wider variety of rewards. In [2],
Professor Barry Kemp reminds us that for much of the
Pharaoh’s thousands of years of rule, they didn’t have
money. It simply wasn’t invented yet. Instead they used a
system much more aligned to a modern loyalty program.
Citizens, conscripted workers and slaves alike were all
awarded commodity tokens (similar to loyalty points or
cryptocurrencies) for their work and temple time. The most
common were beer and bread tokens. The tokens were made
from wood, then plastered over and painted, and shaped like
a jug of beer or a loaf of bread.
The tokens could also be exchanged for things other than
bread and beer. Those high up enough to earn surplus tokens
could redeem them on something else, just in the same way
that frequent flyer members with lots of points can redeem
them both on flights and on non-flight rewards such as iPads,
KitchenAid mixers and Gucci handbags.
A more modern history of loyalty program currencies can be
traced to the 1700’s. In 1793, a U.S. merchant began
rewarding customers with copper tokens, which could be
used for future purchases, thereby generating repeat visits, a
core focus of loyalty program design. The idea was quickly
replicated by other merchants [3].
The Grand Union Tea Company was formed in 1872 in
Pennsylvania. The owners chose to side-step merchants and
sell their product directly to consumers, starting with door-
to-door sales. They began rewarding customers with tickets
which could be collected and redeemed for a wide selection
of products from the company’s Catalog of Premiums,
which included such rewards as an Oak Roman Chair (100
tickets), lace curtains (120 tickets a pair), Ormolu clock (300
tickets), and dinner set Berlin 1903 (440 tickets). [4]
In the 1890’s, marketers turned to the physical stamp to
reward loyal customers. Customers earned stamps when
making purchases and were encouraged to stick them into
collecting books. The books could be exchanged for a wide
range of rewards. The Sperry and Hutchinson Company
came to dominate this type of loyalty currency approach
with their S&H Green Stamps, which could be earned from
a range of different merchants in an early form of coalition
program. The program was so popular S&H even opened
their own redemption center stores where merchandise could
be purchased using books. At one point S&H claimed they
were distributing 3 times as many Green Stamps as the US
Postal Service was distributing postal stamps. [5]
The 1980’s marked the beginning of the end for stamps when
American Airlines launched the world’s first currency-based

frequent flyer program. They introduced a new currency,
miles, which corresponded to how many miles a member had
flown. Brought on by increasing competition with the
deregulation of the US airline industry in 1978, the
American Airlines AAdvantage program was soon followed
by similar plays from United Airlines, TWA and Delta
Airlines. Other airlines around the world quickly replicated.
In 1987, Southwest Airlines launched a program which
awarded ‘points’ to members for trips flown, irrespective of
the number of miles. Soon after the launch of the early
programs, hotel and car rental companies partnered with the
airlines and started offering miles and points as a way to
grow their market share of the lucrative business travelers
and high-value leisure travelers. The first roots of the
modern, multi-billion dollar coalition loyalty programs took
hold [6].
With the rapid expansion of the frequent flyer programs and
their new currencies, other retailers soon replicated their
approach, and miles & points became the dominant loyalty-
program currencies.

3. MOTIVATION
From a loyalty perspective, the invention of cryptocurrencies
is particularly interesting as it provides a viable alternative
to miles or points.

Despite their dominance, miles and points (and indeed many
of their predecessors) have limitations which restrict their
attractiveness to consumers; (a) their lack of utility, (b) their
ability to expire and (c) their systematic devaluation by
loyalty program operators:

• Limited Utility: Most loyalty programs only allow
miles/points to be used within their eco-system. This
might be on flights, upgrades, an online store, retail
vouchers or other company-specific discounts. One of
the key frustrations for many frequent flyer program
members is the lack of availability of flights when they
try to use their miles/points i.e. they have miles/points
but there are no flights they can spend them on. A
cryptocurrency doesn’t have any of these limitations. It
can be bought, sold, transferred, gifted, sent overseas or
converted into other cryptocurrencies or fiat currencies.

• Points Expiry: Members who aren’t highly-engaged
with a program can lose value when their miles or points
expire. This might be because the miles/points aged and
expired (e.g. points expire 2 years from issuance) or
because there was no account activity for a specified
period (e.g. points expire if there is no activity on the
account for an 18-month period). Major coalition
programs use actuaries to deliberately manage the
program to maintain a set expiry rate in order to
maximise their program profitability. Cryptocurrencies
avoid these issues; they don’t expire.

3

• Systematic Devaluation: A major Australian airline
loyalty program launched an online store in 2008 which
allowed members to redeem points for merchandise and
gift cards. This included a $100 gift card for a popular
department store for 13,500 points. Today, the same
$100 gift card costs 16,800 points. The value of the
points has been devalued by the airline to extract more
profit from the program. Cryptocurrencies doesn’t
reduce in value as they become more popular. Market
forces of supply & demand support a value increase as
the cryptocurrency becomes more desired, ensuring the
value accumulated by members also increases.

Based on the benefits which cryptocurrencies provide
compared to miles and points, we identified the potential for
cryptocurrencies to deliver a more satisfying experience.

The other aspect of cryptocurrencies, the sometimes wild
price fluctuations, were also identified as being a compelling
characteristic of cryptocurrencies compared to miles/points.
While the value of miles/points generally tend to remain
static (ignoring any devaluation events), the value of
cryptocurrencies such as bitcoin and Ether can fluctuate 25%
in a single day. We were interested to understand whether
this would be a significant element in affecting the member’s
overall engagement with the program. We also identified
this as a key differentiator to earning cash.

4. UNIFY REWARDS: OVERVIEW OF
THE SYSTEM AND THE FIELD TRIAL
It was agreed the best way to conduct the research was by
creating a live-market loyalty program called Unify Rewards
which mimicked other loyalty programs, with the main
difference being the reward currency would be a popular
cryptocurrency; Ether. The trial ran from 13th October 2017
to 18th November 2017.

4.1 Merchants
Twelve retailers at UNSW Sydney were enrolled as program
merchants. With an actual loyalty program the merchant
would be required to cover the cost of the reward currency
provided to the participant, however for the purposes of the
trial merchants were not required to contribute anything,
with all currency costs covered by the project budget.

4.2 System
We recruited two loyalty companies to build the solution;
Pico and Loyalty Corp. Pico provide a proprietary cloud-
based point-of-sale data collection solution. Honeywell

scanners connected to Pico units (comprised of a Raspberry
Pi) were placed near the point-of-sale system at each
merchant. When the participant scanned a unique barcode
from their mobile device, the Pico unit sent the participant
ID with a date & time stamp into the cloud, where it was
captured and sent via API to Loyalty Corp’s platform.

Loyalty Corp provided the front-end and back-end loyalty
platform solution. A web app was developed which allowed
students & staff to register for the program. Once registered
they could access an account which showed their barcode,
their account balance, plus it allowed them to process a
redemption transaction. The back-end captured the
transaction event from Pico and loaded the data into the
participant’s account real-time, allowing them to see that
they had successfully earned for their scan.

When 10 stamps were collected, the Loyalty Corp platform
purchased Ether from the Ethereum blockchain and added it
to the member’s account. Figure 1 depicts the system and
outlines the various steps described above.

4.3 Participation Enrolment
The enrolment process was more extensive than most loyalty
programs due to a range of additional requirements provided
by the University’s Ethics Committee.

Figure 1: Unify Rewards System Architecture

4

As the participants were agreeing to a formal research
project, they were not only required to provide standard
loyalty program registration details (name, email address
and password) but they also were required to agree to the
university’s extensive research participation criteria.
This may have dissuaded some students and staff from
completing the registration process, however there is no
evidence to support this.

4.4 Earning Cryptocurrency
To earn Ether cryptocurrency, participants conducted a
transaction at any of the merchants. Irrespective of the size
of the transaction, the participants were permitted to scan
their unique barcode via the dedicated scanner. Scanning
earned them one digital stamp, which appeared in their web
app account. Participants were permitted to earn up to 5
stamps per day. When the participant earned 10 stamps, the
stamps automatically converted into Ether.

To ensure participants had the experience of owning Ether
for as long as possible, a $5 Ether join bonus was provided
to them at the beginning of the trial.
At the start of the project participants could earn $5 of Ether
for 10 stamps. From the second week, this was increased to
$10 of Ether for a marketing exercise (Double Ether Week)
but ended up being maintained for the remainder of the trial.

When a participant earned their Ether allocation, part of an
Ether was provided to them, with the amount calculated on
the dollar amount they had earned ($10) and the price of
Ether at the time of the earn event.

Participants were not required to create a separate Ether
cryptocurrency wallet, as their Ether balance was held for
them in trust within their loyalty account.

4.5 Redemption
Participants had a range of options for redeeming their Ether
balance. Throughout the trial they could:

• Cash their balance into an e-wallet. The Ether was sold
at the actual market rate, and they funds were transferred
into an e-wallet held within the web app. They could use
the balance to access a discount on a range of popular
gift cards.

• Cash their balance into a bank account. The Ether was
sold at the actual market rate, and they funds were
transferred into the participants nominated bank
account.

• Transfer their balance to another participant, simply by
using the recipient’s registered email address.

At the end of the trial, participants were also provided with
the opportunity to transfer their balance to their personal

Ether Wallet. For those participants who didn’t have a
wallet, instructions were provided on how to create one.

4.6 Marketing
As with any consumer loyalty program, a range of marketing
communications were sent to participants during the trial to
educate them and stimulate engagement with the program.

The ambition of the marketing strategy was to persuade as
many participants as possible to accumulate at least ten
stamps, earning an Ether payout of $5 to $10, in order to
provide them with a significant enough experience to be able
to meaningfully complete a survey at the end of the trial.

Marketing campaigns during the trial included:

- Welcome email: Provided participants with relevant
information to educate them about the essential
elements of the trial.

- $5 Ether join bonus: Provided participants with an Ether
balance early in the program so they could explore the
concept of cryptocurrency ownership more deeply
given the trial time constraints.

- Win One Ether competition: Participants received one
entry for each stamp they earned to encourage early
swiping and engagement.

- Cool earn tips from a member: An educational email
detailing insight from a participant on how to maximise
stamps earned.

- Double Ether week: Designed to drive ongoing
engagement with the program by increasing the prize
for earning ten stamps.

- Price of Ether: an educational email detailing the price
fluctuations of Ether, designed to generate interest
amongst participants in following the price changes.

- Last week of Unify Rewards: Designed to communicate
the end date of the program and encourage participants
to make the most of their last few days to scan and earn.

- Survey: An invitation to complete the research survey
for the program.

5. EVALUATIONS
In the following we present results from the field trial.

5.1 Registration
177 participants registered for the program. Due to delays
with the Ethics Committee approval process, the two-week
registration window was reduced to 3 days, which included
a weekend (thus one business day). Despite the severe
reduction in time, the authors were very happy with the high
number of registrations.

5

5.2 Participation
Scans were strongest in the first two weeks of the trial. They
dropped off during exam period as many students were not
on campus during that period (or frequented campus less
regularly).

The spread of total stamps earned during the trial was as
follows.

- 21% of participants earn 0 stamps (registered but didn’t
engage further)

- 18% earned 1-9 stamps

- 61% earned 10 stamps or more (achieving the project
target for engagement as it allowed them to earn at least
one allocation of Ether)

Even more encouragingly, 18% earned 20 stamps or more.

This is a very high engagement rate for a loyalty program
compared to industry averages. By comparison, two major
loyalty programs in Australia show member engagement
rates of 57% (a major supermarket chain) and 37% (a major
liquor chain).

5.3 Marketing Engagement

Figure 1: EDM Response

Engagement with the marketing communications was
consistently high. The minimum open rate for Electronic
Direct Mail (EDM) was 48.3% and the maximum was
72.7%, well above the industry average for loyalty programs
which sits at around 20%. Figure 2 illustrates EDM open
rates over the trial period. During the trial period, just two
participants unsubscribed from communications. This
indicates strong engagement with the program by a majority
of participants.

5.4 Redemption Behavior
With respect to redemption behaviour:

- 67% of participants chose to transfer their Ether to their
personal Ether Wallet

- 29% of participants chose to cash in their Ether for a
deposit into their bank account

- 4% of participants chose to cash in their Ether to use for
a gift card

- 0% of participants transferred their ETH allocation to
another participant

The outcome indicates a strong propensity from a majority
of participants to hold their Ether for speculative purposes,
an advantage cryptocurrencies have over loyalty points, and
one which the survey results identified as being particularly
attractive to members. This provides a sharp contract to a
program where they might earn cash, which has little
speculative potential for the average consumer.

5.5 Survey Results
72 participants completed the post-project qualitative
survey. Participants who didn’t earn any stamps were not
invited to fill in the survey, as it was felt they had not
engaged with the program, therefore wouldn’t have
sufficient insight to provide a meaningful opinion.

Participants indicated they were generally well-exposed to
points-based loyalty programs, with only one respondent
indicating they didn’t belong to any program. This meant
participants had sufficient insight to compare a points
program to a cryptocurrency program.

Overwhelmingly the results indicate participants found a
cryptocurrency-based program to be more engaging than a
points-based program.

Respondents reported the following:

- They found Unify Rewards to be more rewarding than
their favourite loyalty program (7.58 vs 6.04/10)

- They felt Unify Rewards was more motivating in
influencing them to spend their money with
participating merchants than their favourite loyalty
program (7.80 vs 5.98/10)

- They reported both Unify Rewards and their favourite
loyalty program had motivated them to modify the way
they spent money to maximise their loyalty currency
earn (83% for Unify Rewards vs 80% for their favourite
loyalty program). This is strong result for both
approaches and provides evidence loyalty programs can
be effective in influencing consumer spend behaviour.

- They provided a higher Net Promoter Score for Unify
Rewards than their favourite loyalty program (8.53 vs
5.72/10)

- 59% spent more money on campus during the trial
period. A further 41% reporting spending the same.

- 86% felt Unify Rewards was more appealing than their
favourite loyalty program, and 11% felt it was just as
appealing.

Some of the positive reasons cited included:
- The concept is interesting since the value can fluctuate.

6

- There's a bit of mystery about Ether - it's a bit of a wild
card so there's an element of speculation and potential
that makes it exciting. But it's not a guaranteed thing.

- Cryptocurrency is cool, exposed me to it
- Cryptocurrency is a very exciting currency as it

fluctuates and you never know what to expect the next
day. It might go up, or go down, and it is a great
experience to learn about how it works and what
influences it.

- The possibility of growing value and ability to cash out
when you like is very attract.

- More appealing because of the tangible dollar value of
the ether as opposed to less tangible points

- Ether feels like you're getting money rather than
"points". When Ether was low, I was incentivised to
spend and reach the next 10 before Ether spiked.

Some of the negative reasons cited included:
- There is too much fluctuation with cryptocurrency.
- It was an interesting reward, but also felt to be of little

difference to cash.
Further analysis of the survey data identified evidence to
suggest surveyed participants who were less satisfied with
the level of reward from existing loyalty schemes were more
likely to find earning Ether more appealing.
While the research was focused on members and not
merchants, the verbal feedback from merchants was positive
due to the increase in spend by members seeking to earn
more Ether. This would only increase with scale.

6. CONCLUSIONS AND FUTURE WORK
The evolution of currencies in loyalty programs shows a
long and varied history. Tokens, tickets, stamps, miles and
points have all been invested as a device to stimulate loyalty
from worshippers and customers, often with great success.
They also carry limitations, including limited utility, expiry
and devaluation characteristics. With miles & points
dominating as the main loyalty currency for over 35 years, it
would not be unusual in the history of loyalty for them to be
replaced by a new currency design.
Our world-first field trial has shown cryptocurrencies have
the potential to be that new currency. The research
demonstrated offering Ether as an alternative to miles/points
generated very strong engagement with the Unify Rewards
program, with 86% of survey respondents reporting they
found it to be more appealing that the points they earn from
their favorite loyalty program.
While some members drew comparisons with cash, the
overwhelming opinion from members indicated they felt
cryptocurrencies were more exciting and desirable due to
value fluctuations (‘you never know what to expect the next
day’) and the potential for a significant future value increase
(‘there's an element of speculation and potential that makes
it exciting’). It is also telling that 67% of participants chose

to hold (or HODL) their Ether rather than cash it in. In that
sense, we argue cryptocurrencies injects a unique and
highly-engaging gamified element into the program which is
absent from points & miles programs, and cash programs.
Some merchants may not appreciate that the
cryptocurrencies earned within the program can be
transferred externally, rather than reinvested with them. This
issue can be offset via quality customer experience design in
two ways; firstly, by making it really easy and worthwhile to
spend with the merchant, and secondly by allowing the
member to transfer other cryptocurrencies into the eco-
system to be easily spent with the merchant.
Further research is required to explore the potential of
cryptocurrencies in future loyalty program design. The
Unify Rewards earn approach, where 10 stamps were
required to earn $10 Ether, was simplistic and didn’t take
into account the amount of spend made in each transaction.
A new research project which ties the amount of
cryptocurrency earned to the amount spent would provide an
additional insight; whether cryptocurrency loyalty programs
are more effective in driving higher transactional spend than
miles & points-based programs.
Another aspect which was not possible to measure with
Unify Rewards is the effectiveness of a new cryptocurrency
in driving engagement behavior. While some companies
may choose to utilize existing, popular cryptocurrencies
such as Bitcoin and Ether, the bigger opportunity is for a
company to create an original cryptocurrency with full
control over the amount created and how it is distributed.
This would likely involve a greater investment to build
awareness of, and desire for, the currency, and would require
a longer timeframe to determine any results.
Our research indicated cryptocurrencies do have a key role
to play in the future design of loyalty programs, and
companies around the world already running a miles/points-
based program, or considering implementing one, should
seriously consider cryptocurrencies as a viable alternative.

7. REFERENCES
[1] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash

System," 2009. [Online]. Available:
https://bitcoin.org/bitcoin.pdf. [Accessed 11 12 2017].

[2] B. J. Kemp, Ancient Egypt: Anatomy of a Civilization, 2nd
Edition ed., Routledge, 2006.

[3] C. T. &. B. Innovator, "The Loyalty Evolution," New York,
2016.

[4] G. U. T. Company, Grand Union Tea Company - Catalogue of
Premiums 1903, 1903.

[5] S. &. Hutchinson, S & H Green Stamps Ideabook of
Distinguished Merchandise: 70th Anniversary Edition, 1966.

[6] R. Petersen, "History of Frequent Flyers Program," 2001.
[Online]. Available:
http://www.webflyer.com/company/press_room/facts_and_st
ats/history.php. [Accessed 11 12 2017].

7

Collaboration among Adversaries:
Distributed Workflow Execution on a Blockchain

Mads Frederik Madsen
IT University of Copenhagen

Rued Langgaards Vej 7
2300 Copenhagen S,

Denmark
mfrm@itu.dk

Mikkel Gaub
IT University of Copenhagen

Rued Langgaards Vej 7
2300 Copenhagen S,

Denmark
mikg@itu.dk

Tróndur Høgnason
IT University of Copenhagen

Rued Langgaards Vej 7
2300 Copenhagen S,

Denmark
thgn@itu.dk

Malthe Ettrup Kirkbro
IT University of Copenhagen

Rued Langgaards Vej 7
2300 Copenhagen S,

Denmark
maek@itu.dk

Tijs Slaats
University of Copenhagen

Emil Holms Kanal 6
2300 Copenhagen S,

Denmark
slaats@di.ku.dk

Søren Debois
IT University of Copenhagen

Rued Langgaards Vej 7
2300 Copenhagen S,

Denmark
debois@itu.dk

ABSTRACT

We study distributed declarative workflow execution in an
adversarial setting. In this setting, parties to an agreed-upon
workflow do not trust each other to follow that workflow,
or suspect the other party might misrepresent proceedings
at a later time. We demonstrate how distributed declara-
tive workflow execution can be implemented as smart con-
tracts, guaranteeing (I) enforcement of workflow semantics,
and (II) an incontrovertible record of workflow execution his-
tory. Crucially, we achieve both properties without relying
on a trusted third party.

The implementation is based on the Ethereum blockchain,
inheriting the security properties (I) and (II) from the guar-
antees given by that chain. A recurring challenge for both
the implementation and the analysis is the cost of opera-
tions on Ethereum: This cost must be minimised for honest
parties, and an adversary must be prevented from inflicting
extra cost on others.

1. INTRODUCTION
Mutually distrusting organisations must often collaborate,

as illustrated by the following example. On the Danish
labour market employer-employee disputes are resolved not
by the parties themselves, but by the umbrella organisations
for respectively Danish employers (abbreviated here “DE”)
and Danish unions (abbreviated here“DU”)1. A dispute may
be resolved through negotiations between the two parties, or
if negotiations break down, in court.

1The actual Danish names are“Dansk Arbejdsgiverforening”
(DE) and “Landsorganisationen” (DU).

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and FAB 2018.
Symposium on Foundations and Applications of Blockchain (FAB ‘18)
March 9, 2018, Los Angeles, California, USA.

Given their conflicting interests, DU and DE are mutu-
ally distrusting collaborators. They follow an agreed-upon
process when negotiating a dispute, a process which defines
simple things like who proposes meeting dates, who submits
which document to whom and how, etc.

However, depending on the strength of their respective
cases, they may not have equal incentives to follow this pro-
cess. If an employee has a strong claim to unpaid salary,
DE may be less forthcoming in responding to meeting date
proposals. Conversely, if an employer is planning legal but
unpleasant mass firings, DU may similarly stall the process.
Should a case go to court, either party’s intransigence may
have legal repercussions.

This reluctant collaboration is an example of a cross-or-
ganisational workflow between adversaries. System support
for such a workflow must provide two key guarantees:

(I) Workflow correctness. The system must enforce
the agreed-upon workflow, so that no party can obtain
an advantage by acting out of turn or failing to fulfil
an obligation to act.

(II) Consensus on history. The system must provide
an incontrovertible record of execution, e.g., to decide
in court which party did in fact violate the agreed
upon workflow.

The usual way to achieve (I) and (II) is having participants
agree on a trusted third party. This third party verifies that
the actions taken are within the bounds of the agreement,
and meticulously records the proceeding of the case. How-
ever, such a third party is not always practical: It may be
difficult for the parties to agree on one, and it may be ex-
pensive to retain one, especially at large case volumes.

In this paper, we show how (I) and (II) may be achieved
without a trusted third party by implementing an executable
workflow specification as an Ethereum smart contract.

Our solution is based on recent advances in executable
workflow specifications on the one hand and blockchain tech-
nologies on the other. A blockchain can be used as a mech-
anism to produce a trusted, immutable record of workflow
execution. E.g. if DU and DE were to store the history of

8

their common processes on a blockchain, they could both
trust this history to be correct with very high probability.

Executable workflow specifications. Agreeing on a record
of workflow history is only a part of the puzzle. We must
also enforce adherence to the agreed-upon workflow, i.e.,
the rules governing the exact order in which work can be
done. Instead of encoding a workflow directly as a part of
the source code of the system, it is typically modelled sepa-
rately in a workflow notation such as BPMN [32], Workflow
Nets [1], DECLARE [39], DCR graphs [7, 10], GSM [24], or
CMMN [31]. In the best case, such a model is executed by an
execution engine embedded in the overall system, enabling
straightforward adaptation of work practices by changing
the model rather than redeveloping the system itself.

Traditionally, workflow notations have been flow-based,
describing processes in a style similar to transition systems,
representing precisely the steps that one may go through to
satisfy the goals of the process. Such notations work well for
strict production processes with little variation, but when
applying them to knowledge intensive processes [11], which
usually allow a large degree of flexibility and many different
paths towards the goals of the process, the models tend to
become overly complex and unreadable [39].

Declarative process notations [39, 19, 31, 38] address this
deficiency by capturing not explicit flow but rather the con-
straints and goals of a process, letting the system deduce the
allowed paths to the goal. As shown in [20], the declarative
approach is highly relevant in the case of DU and DE, whose
processes are strongly knowledge intensive.

A declarative process model may be implemented as a
smart contract [36, 40]: a blockchain where blocks represent
not only a common history, but also contracts in the form
of executable code. For example, DU and DE have agreed
that DU will always propose meetings first; encoding this
rule in a smart contract, we can ensure that any attempts
to add new events in violation of this rule are rejected.

Contributions. We show that a declarative workflow engine
can be employed in an adversarial setting by embedding it
on a blockchain as smart contracts. We demonstrate how
this approach can be implemented in practice on the Ethe-
reum [40] blockchain, using the smart contract language So-
lidity and the process execution semantics of DCR graphs [7,
10]. This implementation guarantees (I) correctness with
regard to the agreed-upon workflow and (II) the recording
of an incontrovertible history. Of course, these guarantees
extend no further than the security of the underlying Eth-
ereum blockchain technology, i.e., we assume no adversary
can construct Ethereum blocks faster than the honest nodes.

Cost is an issue: Both the cost of participation in the
workflow, and the possibility of attacks that inflict cost on
honest nodes. In particular, to minimise cost caused by the
Ethereum smart contract model (where each computational
operation incurs a micro-fee), our cost-effective implementa-
tion required both counter-intuitive contract design as well
as other non-trivial performance enhancements.

1.1 Related Work
In [41, 16, 30] the authors propose encoding workflows

as a smart contract on a blockchain. An implementation
of these ideas was given in Caterpillar [28]. In these works,

workflows are modelled by BPMN diagrams [32]. This choice
of notation clearly separates it from the present work: rather
than structured, flow-based processes, we apply the approach
to declarative process notations, thereby providing support
for knowledge-intensive processes.

In [15], the authors introduce a high-level language, in-
spired by institutional grammars, that can be compiled into
Solidity code. The notation has a declarative feel to it, but
describes business contracts rather than workflows. More-
over, the authors do not provide an implementation.

In [23], the authors argue for the suitability of the busi-
ness artefact paradigm towards modelling business processes
on a distributed ledger. The paper lays out their vision, but
does not go into detail on neither exact syntax or semantics,
nor the exact guarantees offered by smart contracts.

In [20], the DU and DE case was studied in the context of
declarative workflow specifications, but relying on a trusted
third party for their collaboration. We use this collaboration
as a running example; there is otherwise no special relation
between the present and this older work.

Both of the properties (I) and (II) are closely related to
classical security properties. It was demonstrated in [5] that
a workflow notation may encompass security policy spec-
ifications. Enforcing distributed adherence to a workflow
definition is related to enforcing distributed adherence to a
security policy, e.g., [4, 33]. Achieving consensus on the his-
tory of a distributed workflow execution is reminiscent of
distributed monitoring, e.g., [43, 25].

2. ETHEREUM
Ethereum [42, 40] is a blockchain extended with user-

created code and arbitrary data encapsulated in smart con-
tracts. When a transaction is included in a block, part of the
verification of that block comprises running the code spec-
ified by the transaction, mutating the state of the contract
accordingly.

This code is executed on the Ethereum Virtual Machine
(EVM), in which each operation has an associated cost de-
noted in Gas. Once the sum of Gas has been calculated for
an execution, it is paid for in the Ethereum cryptocurrency
Ether by the user calling the code, at an Ether/Gas rate
specified by that user. This rate allows miners to prioritise
those calls paying the most.

The EVM is in principle Turing-complete [42]. However,
all computations are in practice finite, limited by the amount
of Gas that a caller is willing to spend.

Ethereum allows one to verify the existence of specific
source code on the blockchain, whether it has been run, and
whether a run was completed successfully or not. Moreover,
Ethereum certifies that code was executed as specified, and
that only authorised parties execute contract calls [42, 40].
This means that when implementing workflows as smart
contracts, any participant can be certain that the source
code is unchanged and that every execution is validated with
respect to both the contract logic and execution rights.

Like the Bitcoin blockchain, the Ethereum blockchain re-
lies on mining being hard to ensure that the probability of
an attacker overtaking the main chain, rewriting history, is
low. However, whereas the Bitcoin blockchain and variants
has seen work on analysing under what circumstances and
with what probabilities that might happen [3, 27, 35, 26, 6,
2, 37, 18] we are unaware of similar analyses for Ethereum.

9

3. DCR GRAPHS
In this Section, we recall DCR Graphs, a vehicle for spec-

ifying admissible sequences of event executions. A DCR
Graph specifies an“agreed-upon”workflow, where the events
are the activities of the workflow. A DCR Graph comprises
events (nodes) and relations between events (edges); events
have state which is recorded in amarking. Relations indicate
how executability of one event may depend on the states of
others, and how execution changes such states.

Definition 1 (DCR Graph [19]). A DCRGraph is a
tuple (E,R,M) where

• E is a finite set of events, the nodes of the graph.

• R is the edges of the graph. Edges are partitioned into
five kinds: conditions (→•), responses (•→), mile-
stones (→⋄), inclusions (→+), and exclusions (→%).

• M is the marking of the graph, a triple (Ex,Re, In) of
sets of events, respectively the previously executed (Ex),
the currently pending (Re), and the currently included
(In) events.

When G is a DCR Graph, we write, e.g., E(G) for the set of
events of G, as well as, e.g., Ex(G) for the executed events
in the marking of G.

We give in Figure 1 an excerpt of the workflow of DU and
DE reported in [20]. The events are nodes in the graph; the
marking of each event is shown graphically: Hold Meeting is
pending, viz. the blue exclamation mark; both Accept events
are excluded viz. the dashed border.

Figure 1: The DU/DE example—a DCR model of a
cross-organisational workflow

By default, every activity may execute any number of
times. We regulate the sequencing of such activity execu-
tions by adding relations between activities. There are five
such relations: Three which mutate the state of some events
when another executes, and two which constrain the ability
of one event to execute depending on the state of others.

3.1 Execution of Events
To specify what happens when an event executes, we have

the response, inclusion, and exclusion relations.
First, the response. When either DE or DU proposes a

date, the other is required to eventually accept one. The
blue responses (•→) from Propose - DU to Accept - DE and

Propose - DE to Accept - DU model this requirement: Exe-
cuting the first event makes the second event pending.

The red exclusions (→%) temporarily remove events from
the process. This can be both an event removing itself after
being executed, as is the case for each instance of Accept,
or an event removing another event, exemplified by Accept -
DU removing Accept - DE and vice versa. We say that such
a removed event is excluded, indicated by a dashed border,
as seen in the two Accept events.

Exclusions are dynamic and may be reverted: When DU
or DE proposes new dates, the other is expected to accept
these dates again. This is modelled through the green inclu-
sions (→+) from Propose - DU to Accept - DE and Propose
- DE to Accept - DU. Because Accept - DU and Accept - DE
are excluded (dashed border), either requires its including
event to happen before it can itself happen.

We formalise the notion of executing an event.
Notation. For a binary relation → ⊆ X × Y and set Z,
we write “→Z” for the set {x ∈ X | ∃z ∈ Z. x → z}, and
similarly for“X→”. For singletons we usually omit the curly
braces, writing →e rather than →{e}.

Definition 2 (Execution [19]). Let G = (E,R,M) be
a DCR Graph with marking M = (Ex,Re, In). If we execute
e in G, we obtain the resulting DCR graph (E,R,M′) with
M′ = (Ex′,Re′, In′) defined as follows.

1. Ex′ = Ex ∪ e

2. Re′ = (Re \ e) ∪ (e•→)

3. In′ = (In \ (e→%)) ∪ (e→+)

That is, to execute an event e one must: (1) add e to the
set Ex of executed events; (2) update the currently required
responses Re by first removing e, then adding any responses
required by e; and (3) update the currently included events
by first removing all those excluded by e, then adding all
those included by e.

3.2 Enabled Events
Not all events in a graph are necessarily allowed to ex-

ecute. To specify which events are in fact executable we
have conditions and milestones. A condition indicates that
when the source is included but not executed, the target
cannot execute. For example, by convention, DU is always
the first to propose dates. This is modelled by the condition
relation(→•) between Propose - DU and Propose - DE.

When dates have been proposed but not yet accepted, the
meeting cannot be held. The milestone relations (→⋄) from
Accept - DU and Accept - DE to Hold Meeting ensure this:
a milestone indicates that whenever the source is included
and pending, the target cannot execute. In the diagram, the
Accept events are not yet pending. This is intentional: DU
and DE may skip proposing dates and hold ad hoc meetings.

Unlike the condition relation, an event constrained by a
milestone can become blocked again. In our example, if a
date was accepted but later new dates are proposed, accept-
ing dates becomes pending again, blocking Hold Meeting.

We give formal meaning to these relations.

Definition 3 (Enabled events [19]). Suppose G =
(E,R,M) is a DCR Graph with marking M = (Ex,Re, In).
We say that an event e ∈ E is enabled and write e ∈
enabled(G) iff (a) e ∈ In, (b) In ∩ (→•e) ⊆ Ex, and (c)
In ∩ (→⋄e) ⊆ E\Re.

10

That is, enabled events (a) are included, (b) have their in-
cluded conditions already executed, and (c) have no included
pending milestones. The enabled events for the DCR Graph
in Figure 1 are Propose - DU and Hold Meeting.

General DCR Graphs have labelled events, allowing dis-
tinct events to exhibit the same observable activity, a detail
we have elided in the current paper. In the general case,
DCR Graphs express the union of regular and ω-regular lan-
guages [10].

3.3 Distributed DCR Graphs
Distributed implementations of DCR Graphs were studied

in [22] and [9]. In both cases, the core idea is that workflows
are partitioned in subsets of events, with each participant
owning a particular subset. The owner of an event is re-
sponsible for maintaining the marking (M, Definition 1) of
that event. Moreover, only the owner of an event can exe-
cute it (Definition 2).

Since executing one event may modify others via exclu-
sion, inclusion and response arrows (Definition 2), whenever
a party executes an event, it may have to notify owners of
affected events. E.g., in the DU/DE example (Figure 1),
events are naturally owned by either DU or DE as indicated
at the top of each event. The event Propose - DU is owned
by DU and so can only be executed by DU; however, exe-
cuting this event includes the event Accept - DE, and so DU
must notify DE whenever it executes Propose - DU, in order
that DE may toggle the state of Accept - DE to included.

Similarly, before executing an event, the owner must verify
that the event is enabled (see Definition 3). Whether an
event is enabled is a function of the marking of other events
via condition or milestone relations, hence the owner may
have to query owners of such other events. E.g., in the
DU/DE example, DE cannot execute Propose - DE before
querying DU about the state of Propose - DU because of the
condition relation from the latter to the former.

As queries for enabledness may interleave with effects of
an execution, distributed implementations of DCR Graphs
generally need some form of concurrency control [9].

4. DISTRIBUTED DCR GRAPHS AS
ETHEREUM SMART CONTRACTS

In this section, we consider in the abstract an implemen-
tation of distributed DCR Graphs as Ethereum smart con-
tracts. We shall see how such an implementation achieves
the goals (I) and (II) of Section 1 provided an adversary has
no feasible attack on the Ethereum blockchain.

The naive implementation of DCR Graphs as Ethereum
smart contracts is to simply implement a contract compris-
ing a DCR Graph (Definition 1) represented as an Ethereum
data structure, and calls for computing execution and en-
abled events (Definitions 2 and 3). Only the owner of an
event has access rights to execute that event. This appeal-
ingly simple idea turns out to mask considerable pitfalls, in
particular regarding who bears the cost of executing that
call. In this section, we analyse this situation.

4.1 Cost of Relations
Previous treatments of distributed DCR graphs [9, 22]

do not emphasise ownership of relations. Adding a rela-
tion to a DCR Graph induces additional computation in
either enabledness (condition, milestone) or effect of execu-

tion (inclusion, exclusion, response). On Ethereum, addi-
tional computation translates directly to additional cost, so
an adversary can inflict cost on honest parties if he can add
new relations. For example, adding 100 distinct conditions
Ai →• X to some event X would increase the cost of com-
puting enabledness of X by 100 additional checks whether
each Ai is executed or excluded.

Figure 2: Inter-workflow relations

For conditions and milestones, each such relation induces
computational cost at the owner of the target event. For
example, in Figure 2, Workflow 2 must consult Workflow 1 to
learn the state of A before it can execute event C. In general,
adding an incoming relation such as A →• C increases the
cost of computing enabledness of its target C. To avoid cost-
inflicting attacks, only the owner of the target C should be
allowed to add incoming relations to it.

However, because executing D requires an update of the
state of B, if that update is to be performed by the owner of
B, there is again an opportunity for an adversary to inflict
cost. In that case, we must again require that only the owner
of B and D jointly may add relations.
We summarise where adding relations incurs cost Table 1.

Added relation cost on A cost on B

A →• B !

A →⋄ B !

A →+ B !

A →% B !

A •→ B !

Table 1: Incurred cost of added relations

4.2 Correctness
In general, adding relations to a workflow can make that

workflow both more and less restrictive [8, 10]. For example,
in Figure 2, the condition relation (top) means that Work-
flow 2 must wait for Workflow 1 to execute A before it can
execute activity C. If we imagine we have just added that
condition, the new combined workflow has less behaviour
than the old one, but no new behaviour. Thus, an adver-
sary who can add relations can mount a potential denial-of-
service attack by adding enough relations that the resulting
combined workflow has no behaviour left.
Conversely, adding inclusions and exclusions can make a

workflow less restrictive [8]. Without the inclusion relation

11

(bottom) in Figure 2, Workflow 1 can never execute activ-
ity B. If we imagine we have just added that inclusion, the
new combined workflow has more behaviour than the orig-
inal one, since the new one admits the sequence DB which
the old one did not. This means that an adversary who can
add relations can violate correctness of the original work-
flow. E.g. if the activity B were “pay out lump sum”, the
adversary has succesfully orchestrated a payout in violation
of the original workflow policy.

Assume a correct implementation of (1) the computation
of enabled events and (2) the effect of executing event in So-
lidity. Assume moreover that this implementation is used for
implementing the distributed workflow in such a way that
each party to the workflow can execute only the events they
own, and only when these events are enabled. In this case,
running this implementation on Ethereum, we get an imple-
mentation of the workflow which automatically achieves the
goals of workflow correctness (I) and consensus on history
(II) provided the adversary cannot produce valid blocks fast
enough to outpace the Ethereum miner network.

Note that in workflows with more than two participants,
we do not preclude colluding actors within the bounds of
concurrent workflow semantics. In such a workflow, two
or more participants could mount a denial-of-service attack
against other participants by coordinating executions of ac-
tivities on the same block, thereby skipping states in which
specific activities were enabled. This is an inherent con-
sequence of allowing concurrent executions of activities in
DCR-graphs, and not a violation workflow correctness (I).

5. COST REDUCTIONS
Our practical experiments have revealed two major in-

sights about executing DCR Graphs on Ethereum:

1. It is indeed feasible to implement distributed workflows
in an adversarial setting on the Ethereum blockchain.

2. However, to keep costs manageable, our implementa-
tion must take some counter-intuitive design decisions,
including implementing only one contract and imple-
menting set operations as bitvectors.

DCR Graphs as presented in Section 3 are simple enough
that the core data structures (relations and markings, Def-
inition 1) as well as operations on them (execution and en-
abledness, Definitions 2 and 3) are straightforward to imple-
ment in contemporary programming languages.

A naive implementation implements DCRGraphs straight-
forwardly as an Ethereum contract for each workflow in-
stance, representing marking and relations straightforwardly
using standard data structures. This naive implementation
has two shortcomings:

1. The Gas costs of Ethereum are dominated by the price
of creating a smart contract, which is an order of mag-
nitude more expensive than other operations [42].

2. The cost of computing enabledness respectively exe-
cution grows linearly with the number of incoming re-
spectively outgoing relations.

5.1 Relations
To reduce the impact of additional relations on the cost

of computing enabledness and execution, we exploit that
the core EVM datatype is a 256-bit value, noting that the

core operations of DCR Graphs (Definitions 3 and 2) are all
simple set-manipulations and can be implemented efficiently
as bit vectors.

Our prototype for this reason assumes at most 256 events
in a DCR Graph, an assumption that is both practically rea-
sonable [29, 34], and straightforward to remove if necessary.

For such fixed-size bit vectors, we get an upper bound of
the cost of executing an activity: execution is implemented
as a static check of the legality of the execution, followed by
3 bitwise-operations between bit vectors representing rela-
tions. We give the implementation of the enabledness com-
putation in Listing 1; we encourage the reader to compare
that listing, in particular lines 16, 20–21, and 25–27 to the
clauses (a)-(c) in Definition 3.

1 function canExecute(uint256 wfId, uint256 activity)
2 public constant returns (bool)
3 {
4 var workflow = workflows[wfId];
5 uint32 i;
6

7 // sender address must have execute rights
8 for (i = 0; i < workflow.authAccounts.length; i++)
9 if (workflow.authAccounts[i] == msg.sender)

10 break; // sender authorised
11

12 if (i == workflow.authAccounts.length)
13 return false; // sender not authorised
14

15 // activity must be included --- Def. 3(a)
16 if ((workflow.included & (1<<activity)) == 0)
17 return false;
18

19 // all included conditions executed --- Def. 3(b)
20 if(workflow.conditionsFrom[activity] &
21 (~workflow.executed & workflow.included) != 0)
22 return false;
23

24 // no included milestones pending --- Def. 3(c)
25 if(workflow.milestonesFrom[activity]
26 & (workflow.pending & workflow.included) != 0)
27 return false;
28

29 return true;
30 }

Listing 1: Enabled computation

Besides the optimisations we have mentioned so far, our
prototype implementation uses additional tricks to minimise
Gas costs, notably packaging call data to conserve storage
space. We refer the interested reader to [17], which contains
additional implementation detail.

As mentioned in Section 2, execution of Ethereum smart
contracts is paid for by setting an exchange rate between
Gas, the cost of execution instructions, and the crypto-
currency Ether. We compare the cost of the naive and op-
timised implementations in Table 2.

Note that the cost of executing some activities actually
increases from naive the to the optimised implementation:
the bit vector implementation give lower Gas cost on exe-
cution only when events have many relations. The DU/DE
example is too small to exhibit this effect; however, practical
workflows tend to have many more relations [21].

12

Event Naive Optimised
gas usd⋆ gas usd⋆

1. Initialisation⋆⋆ 2,185,061 14.582 717,709 4.790
2. Propose - DU 61,126 0.408 66,293 0.442
3. Propose - DE 62,592 0.418 52,615 0.351
4. Accept - DU 46,126 0.308 51,293 0.342
5. Accept - DE 46,226 0.308 52,615 0.351
6. Hold Meeting 37,353 0.249 49,665 0.331

Sum 2,392,258 16.273 990.190 6.608

⋆ Prices in USD are computed from average Gas- and Ether
prices at the time of writing [13, 14].
⋆⋆ Prices for the naive implementation includes contract cre-
ation and workflow creation; prices for the optimised imple-
mentation only workflow creation.

Table 2: Cost comparison, naive and optimised im-
plementation.

5.2 Contract Creation & Access Control
The cost of creating an instance of the DU/DE example

workflow is given in Table 2, column “Naive”. Notice that
creating the contract, “initialisation” is two orders of mag-
nitude more expensive than subsequent event executions.

To reduce this cost, we propose a mono-contract imple-
mentation, that is, a single contract which hosts all work-
flows, and new workflows can be added at any point af-
ter contract creation. In this mono-contract implementation
methods each take an index of the workflow to work on. In
such a setting, the cost overhead for creating a contract is
incurred only once2: As subsequent workflows are hosted by
this single contract, the cost of creating a contract does not
reoccur. The cost of constructing a new workflow is reduced
substantially, see the column “optimised” in Table 2.

The mono-contract provides access control by accepting,
on workflow creation, a list of public keys/addresses that are
authorised to subsequently execute events; the implemen-
tation manually checks that the caller is authorised before
executing an event. Because state in Ethereum can only
be changed through contract calls, this mechanism provides
complete mediation: there is no way to alter the state of
running workflows without going through the contract op-
erations. Returning to the code for the enabledness compu-
tation in Listing 1, we see access control computed in line
7–10, using the Ethereum provided msg.sender constant.

As mentioned, workflow creation is an order of magnitude
cheaper in the optimised implementation. Moreover, in the
naive implementation, workflow creation is two orders of
magnitudes more expensive than event executions; in the
optimised implementation only one.

6. IMPLEMENTATION
We have implemented a software tool which converts a

DCR Graph to a Solidity smart contract. To show that
our DCR engine can be used in practice, we have imple-
mented a graphical user interface (GUI), where users can
create workflows and execute activities on a deployed Ethe-
reum contract. We host the source code of the contracts at

2This contract was created in the transaction [12] at a cost
of 2,976,162 Gas/USD 8.73.

https://github.com/DCReum/dcreum.github.io for perusal,
and the GUI for anyone to use at https://dcreum.github.io.
An Ethereum node and client are required to view and use
the GUI. We recommend Parity alongside the Google Chrome
extension Parity Ethereum Integration.

Multiple high-level languages compiling to EVM bytecode
exist; our implementation was done in the statically typed
object-oriented language Solidity. However, compared to
main-stream programming languages, in EVM/Solidity we
have to contend additionally with quirks of the Solidity in-
terpreter. For example, Solidity limits the number of vari-
ables allowed in scope at one time, as these are always kept
on the stack, and the EVM only allows access to the 16 top-
most items [42]. Other limitations include externally avail-
able functions not being allowed structs or nested arrays as
arguments or return type.

Ethereum execution causes a delay in event execution, as
the network has to process and accept such an execution.
We can have the acceptance of a transaction (event execu-
tion) prioritised by offering above-market Gas prices. Unless
we send the request at almost exactly the time of new block
propagation, in experiments run late spring 2017, our re-
quests have been included in the next mined block when
paying market Gas prices. However, even though a block
is accepted, it may still find itself on a less difficult chain,
and thus eventually discarded. In general, like in Bitcoin
and other blockchain-based transactional systems, one must
wait some number of blocks before one can reasonably as-
sume that the transaction is permanently included.

The frequency of event executions is bounded by the (dy-
namic) Gas limit [42]. This limit is currently at 6,718,941,
which for the DU/DE example (Figure 1) in theory would al-
low between 101 and 135 executions, depending on the exact
activity executed. If we consider instead single-participant,
non-concurrent executions, the limit is the mining time,
which should average 12 seconds, although at the time of
writing, the average for the last 5000 blocks is ca. 30 sec-
onds. In general, it has been our experience that mining time
varies between a few seconds and several minutes. We esti-
mate we have seen an average of 1-2 executions per minute
at market Gas prices.

7. CONCLUSION
We have demonstrated how to implement distributed de-

clarative workflow execution in an adversarial setting, with-
out the assistance of a trusted third party, by implementing
DCR Graph declarative process models as Solidity contracts
running on the Ethereum blockchain. Within the the secu-
rity guarantees given by this blockchain, this implementa-
tion guarantees that the execution does follow the agreed-
upon workflow—the DCR Graph—(I) and that the sequence
of executions recorded on the blockchain is incontrovertibly
the actual recorded history (II).

Cost is an issue, both because an adversary must be pre-
vented from inflicting cost on an honest party, and because
cost of contract execution is high enough that we must op-
timise. Particularly helpful optimisations are the mono-
contract and bitvector representation of sets and relations.

We have demonstrated the economic feasibility of the im-
plementation: see actual costs in Table 2. Moreover, we have
discussed bounds on delay and frequency of event executions
in Section 6, estimating that the Ethereum blockchain can
likely sustain 1-2 execution per minute at market prices.

13

8. REFERENCES
[1] W. M. P. v. d. Aalst. Verification of Workflow Nets. In

Proceedings of the 18th International Conference on
Application and Theory of Petri Nets, ICATPN ’97,
pages 407–426, London, UK, UK, 1997.
Springer-Verlag.

[2] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn,
and G. Danezis. Chainspace: A Sharded Smart
Contracts Platform. arXiv:1708.03778, 2017.

[3] S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to
better—how to make bitcoin a better currency. In
Proc. of FC ’12, pages 399–414. Springer, 2012.

[4] D. Basin, M. Harvan, F. Klaedtke, and E. Zalinescu.
Monitoring usage-control policies in distributed
systems. In Proc. of TIME ’11, pages 88–95. IEEE,
2011.

[5] D. A. Basin, S. Debois, and T. T. Hildebrandt. In the
Nick of Time: Proactive Prevention of Obligation
Violations. In Proc. of CSF ’16, pages 120–134. IEEE,
2016.

[6] E. Buchman. Tendermint: Byzantine Fault Tolerance
in the Age of Blockchains. PhD thesis, 2016.

[7] S. Debois and T. Hildebrandt. The DCR Workbench:
Declarative Choreographies for Collaborative
Processes. In Behavioural Types: from Theory to
Tools, River Publishers Series in Automation, Control
and Robotics, pages 99–124. River Publishers, June
2017.

[8] S. Debois, T. Hildebrandt, and T. Slaats. Safety,
liveness and run-time refinement for modular
process-aware information systems with dynamic sub
processes. pages 143–160, 2015.

[9] S. Debois, T. T. Hildebrandt, and T. Slaats.
Concurrency and Asynchrony in Declarative
Workflows. In Proc. of BPM ’15, volume 9253 of
LNCS, pages 72–89. Springer, 2015.

[10] S. Debois, T. T. Hildebrandt, and T. Slaats.
Replication, refinement & reachability: complexity in
dynamic condition-response graphs. Acta Informatica,
Sept. 2017.

[11] C. Di Ciccio, A. Marrella, and A. Russo.
Knowledge-intensive processes: characteristics,
requirements and analysis of contemporary
approaches. J. on Data Semantics, 4(1):29–57, 2015.

[12] Mono-contract creation transaction.
https://etherscan.io/tx/0x003fb07eb74b4a2557dc48fa-
8e7799e481f98e0c4ed0857ce646dbe3b9b90cda.

[13] Ethereum average gasprice chart.
https://etherscan.io/chart/gasprice.

[14] Ethereum/us dollar (eth/usd) price chart.
https://www.coingecko.com/en/price charts/ethereum/usd.

[15] C. K. Frantz and M. Nowostawski. From institutions
to code: Towards automated generation of smart
contracts. In Proc. of FAS*W ’16, pages 210–215,
Sept 2016.

[16] L. Garćıa-Bañuelos, A. Ponomarev, M. Dumas, and
I. Weber. Optimized execution of business processes
on blockchain. In Proc. of BPM ’17, pages 130–146.
Springer, Cham, 2017.

[17] M. Gaub, M. E. Kirkbro, F. Madsen, and
T. Högnason. Consensus in declarative process models
using distributed smart-contracts. 2017.

[18] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis,
H. Ritzdorf, and S. Capkun. On the Security and
Performance of Proof of Work Blockchains. In Proc. of
SIGSAC ’16, CCS ’16, pages 3–16, New York, NY,
USA, 2016. ACM.

[19] T. Hildebrandt and R. R. Mukkamala. Declarative
Event-Based Workflow as Distributed Dynamic
Condition Response Graphs. In Post-proc. of PLACES
’10, volume 69 of EPTCS, pages 59–73, 2010.

[20] T. Hildebrandt, R. R. Mukkamala, and T. Slaats.
Designing a cross-organizational case management
system using dynamic condition response graphs. In
Proc. of EDOC ’11, pages 161–170. IEEE, 2011.

[21] T. T. Hildebrandt, R. R. Mukkamala, and T. Slaats.
Nested Dynamic Condition Response Graphs. In
F. Arbab and M. Sirjani, editors, Proc. of FSEN ’11,
volume 7141 of Lecture Notes in Computer Science,
pages 343–350. Springer, Apr. 2011.

[22] T. T. Hildebrandt, R. R. Mukkamala, and T. Slaats.
Safe distribution of declarative processes.
7041:237–252, 2011.

[23] R. Hull, V. S. Batra, Y.-M. Chen, A. Deutsch, F. T.
Heath, and V. Vianu. Towards a shared ledger
business collaboration language based on data-aware
processes. In Proc. of ICSOC, 2016.

[24] R. Hull, E. D. R. D. Masellis, F. Fournier, M. Gupta,
F. Heath, S. Hobson, M. Linehan, S. Maradugu,
A. Nigam, P. N. Sukaviriya, and R. Vacuĺın. A Formal
Introduction to Business Artifacts with
Guard-Stage-Milestone Lifecycles. 2011.

[25] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and
J. M. Smith. Implementing a distributed firewall. In
Proc. of CCS ’00, pages 190–199. ACM, 2000.

[26] A. Kiayias and G. Panagiotakos. On Trees, Chains
and Fast Transactions in the Blockchain. IACR
Cryptology ePrint Archive, 2016:545, 2016.

[27] Y. Lewenberg, Y. Sompolinsky, and A. Zohar.
Inclusive block chain protocols. In Proc. of FC ’15,
pages 528–547. Springer, 2015.

[28] O. López-Pintado, L. Garćıa-Bañuelos, M. Dumas,
and I. Weber. Caterpillar: A Blockchain-Based
Business Process Management System. In Demo
Track, BPM ’17, 2017.

[29] M. Marquard, M. Shahzad, and T. Slaats. Web-based
Modelling and Collaborative Simulation of Declarative
Processes. In Proc. of BPM ’15, pages 209–225, 2015.

[30] J. Mendling, I. Weber, et al. Blockchains for business
process management-challenges and opportunities.
arXiv:1704.03610, 2017.

[31] Object Management Group. Case Management Model
and Notation. Technical Report formal/2014-05-05,
Object Management Group, May 2014. Version 1.0.

[32] Object Management Group BPMN Technical
Committee. Business Process Model and Notation,
Version 2.0. 2013.

[33] A. Pretschner, M. Hilty, and D. Basin. Distributed
usage control. Comm. of the ACM, 49(9):39–44, 2006.

[34] T. Slaats, R. R. Mukkamala, T. T. Hildebrandt, and
M. Marquard. Exformatics Declarative Case
Management Workflows as DCR Graphs. In Proc. of
BPM ’13, pages 339–354, 2013.

14

[35] Y. Sompolinsky, Y. Lewenberg, and A. Zohar.
SPECTRE: A Fast and Scalable Cryptocurrency
Protocol. IACR Cryptology ePrint Archive, 2016:1159,
2016.

[36] N. Szabo. Formalizing and Securing Relationships on
Public Networks. First Monday, 2(9), Sept. 1997.

[37] J. Teutsch and C. Reitwießner. A scalable verification
solution for blockchains. 2017.

[38] R. Vacuĺın, R. Hull, T. Heath, C. Cochran, A. Nigam,
and P. Sukaviriya. Declarative business artifact centric
modeling of decision and knowledge intensive business
processes. In Proc. of EDOC ’11, pages 151–160, 2011.

[39] W. M. van Der Aalst, M. Pesic, and H. Schonenberg.
Declarative workflows: Balancing between flexibility
and support. Computer Science-Research and
Development, 23(2):99–113, 2009.

[40] B. Vitalik. A next-generation smart contract and
decentralized application platform.
https://github.com/ethereum/wiki/wiki/White-
Paper,
2014.

[41] I. Weber, X. Xu, R. Riveret, G. Governatori,
A. Ponomarev, and J. Mendling. Untrusted business
process monitoring and execution using blockchain. In
Proc. of BPM ’16, pages 329–347. Springer
International Publishing, 2016.

[42] G. Wood. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum Project
Yellow Paper, 151, 2014.

[43] X. Zhang, J.-P. Seifert, and R. Sandhu. Security
enforcement model for distributed usage control. In
Proc. of SUTC ’08, pages 10–18. IEEE, 2008.

15

Unchain Your Blockchain

Tamraparni Dasu
AT&T Labs-Research

tamr@research.att.com

Yaron Kanza
AT&T Labs-Research

kanza@research.att.com

Divesh Srivastava
AT&T Labs-Research

divesh@research.att.com

ABSTRACT

Blockchain is emerging as a preeminent decentralized ledger
and receiving increasing attention from researchers, practi-
tioners, organizations and the public. Initially, blockchain
was developed to address the “double spending” problem
in cryptocurrencies, but recently, many new applications
of blockchain have been proposed or are being developed.
Blockchain allows sharing data in a decentralized, transpar-
ent and immutable way, using a peer-to-peer network, with-
out the need to trust any particular entity. To achieve that
in public blockchain, where the peers are a priori unknown,
efficiency and scalability are often sacrificed.

In this paper we present a novel partition of the blockchain
into smaller chains, to allow association of sub-chains, wal-
lets and transactions with real-world concepts, such as ge-
ographical areas, and by this, improve scalability and secu-
rity. Our contribution is threefold. First, we discuss the
utilization of a real-world hierarchical structure, such as a
geospatial subdivision, to partition the ledger into a tree of
connected blockchains, in order to increase scalability and
provide a tradeoff between privacy and transaction latency.
Second, we illustrate the use of a geospatial partitioning
to support geofencing, in order to add security to cryp-
tocurrencies and other blockchain applications. Third, we
present proof-of-location as an alternative to proof-of-work,
to cope with the large waste of energy caused by proof-of-
work, which may be inflated by the partitioning.

CCS Concepts

•Security and privacy → Distributed systems secu-
rity; •Information systems → Spatial-temporal systems;
•Computing methodologies → Distributed algorithms;

Keywords

Blockchain, Proof-of-Location, PoL, decentralized ledger, hi-
erarchical partitioning, immutable storage, cryptocurrency,
Bitcoin, geofencing, localized ledger

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and FAB 2018.
Symposium on Foundations and Applications of Blockchain (FAB ‘18)
March 9, 2018, Los Angeles, California, USA.

1. INTRODUCTION
Blockchain and cryptocurrencies have a growing economic

influence. They are beginning to revolutionize industries [36,
37], and are considered by many to be a game changer in ar-
eas like finance, insurance, notary, copyright protection, dis-
tribution of digital arts, and so on. Hence, they are receiving
a growing attention from researchers and practitioners.

Blockchain is a decentralized public ledger that was ini-
tially introduced as a solution to the“double spending”prob-
lem in cryptocurrencies like Bitcoin [25]. It provides an im-
mutable storage of transactions in a chain of blocks. The
chain is created in a decentralized fashion by peers, using a
peer-to-peer network, without any central node to govern it
or enforce rules. The chain structure provides a serialization
of the stored transactions, to prevent double spending.

Recently cryptocurrencies have flourished, and in partic-
ular, the importance of Bitcoin has increased, as it becomes
an acceptable method of payment to a growing number of or-
ganizations and companies. Cryptocurrencies facilitate mi-
cropayments, provide anonymity to both the payer and the
payee, and lay the basis for an economy without regulation.
This challenges the traditional economic order [40].

Blockchain is receiving growing attention not just as the
underlying technology of cryptocurrencies, but also as a pub-
lic ledger in various domains, as elaborated below.

• Financial transactions: Financial institutions are
examining the use of blockchain as a ledger for financial
transactions, to cut out the middleman to reduce costs
and expedite the processing of transactions [39].

• Digital assets: Blockchain can be used to maintain
digital assets such as stocks, bonds, land titles, etc.
Stored transactions record the transfer of assets be-
tween users [10].

• Evidence of data and documents: The blockchain
stores data and documents, either in full or merely a
digest of the data (e.g., using a cryptographic hash
like SHA-256). The aim is to provide an evidence of
the existence of data or documents, such as contracts,
patents, scientific publications, deeds, insurance poli-
cies, etc. [36].

• Identity management: Using blockchain for iden-
tity management is examined [2, 3]. Hashed features
of a person (digest of verifiable attributes of the per-
son) are stored with a public key or some other means
to electronically sign documents or access remote ser-

16

vices. The aim is to protect people from identity theft
and fraudulent impersonation.

• Sharing data: Blockchain has the potential to pro-
vide a secure infrastructure for smart cities [8, 35],
and could facilitate the creation of a marketplace of
social data [21] where people share their private data
for public benefit.

• Commercial use: Blockchain-based applications are
developed for tracking diamonds from the mines to the
market, managing data provenance in IoT systems [5,
24], to provide transparency in product manufactur-
ing and supply chain management [42], and support
vehicle provenance [39].

While the importance of blockchains is growing rapidly,
it still has drawbacks and limitations that raise concerns
regarding its scalability and suitability to large-scale appli-
cations. A notable concern is that the creation and main-
tenance of a public blockchain cause a significant waste of
energy due to excessive work by the involved peers. Leading
blockchains, such as Bitcoin, are based on Proof-of-Work [4,
19], where the peers, called miners, need to execute a de-
manding computation to create a block. It was estimated
that the energy consumption of maintaining Bitcoin exceeds
the energy consumption of Ireland [26]. The energy con-
sumption continues to grow as more miners join the network.

Another concern is the low rate of transactions. In Bit-
coin, a block is created approximately every 10 minutes, and
the size of a block is fixed (1 MB in Bitcoin, 2MB in Seg-
Wit2x, and 8MB in Bitcoin Cash), and the rate of adding
transactions to the blockchain is around 7 transactions per
second.1 Such a limitation exists in other blockchains as
well, e.g., it is estimated that in Ethereum the transaction
rate is about 10–30 transactions per second.2 This is several
orders of magnitude smaller than the transaction rate that
modern financial institutions are able to process (e.g., more
than 30,000 transactions per second in VISA). Changing the
block-creation rate or the size of a block is difficult because
a blockchain is decentralized, without any entity that can
force a change or enforce new rules. In addition, rapid block-
creation may result in frequent forks, which would make the
blockchain less stable and more vulnerable to attacks.

Anonymity in cryptocurrencies like Bitcion provides some
advantages but also creates risks. A money transfer from an
owner of coins to a payee requires merely a signature using
the private key of the payer. If the private key of a coin
owner is revealed or stolen, the coin can be stolen. A lost
private key is like lost money. Thus, cryptocurrencies are
susceptible to theft and money loss.

In this paper, we envision a partitioning of blockchain
into a hierarchy of sub-chains, reflecting a real-world sub-
division, to increase scalability and security. We illustrate
a geospatial partitioning and explain how localization and
location certificates [20, 31] can be used to reliably estab-
lish association with sub-chains. The levels of the hierarchy
provide a tradeoff between privacy and confirmation time of
transactions. To prevent inflated energy consumption when
replacing a single blockchain by many sub-chains, we intro-
duce a novel proof-of location (PoL) approach that mitigates
the energy consumption problem.
1
https://blockchain.info/charts/transactions-per-second

2
https://etherchain.org/charts/tps

2. BACKGROUND
We start by providing some background. We mainly re-

fer to cryptocurrencies, to simplify the discussion, but the
methods we suggest can be applied to other domains as well.

2.1 Blockchain
Blockchain is a decentralized ledger that stores transac-

tions in a chain of blocks. In cryptocurrencies, a transaction
can be a reward to the creator of a block, or a transfer
of coins from the owner to a payee. Each transaction in-
cludes the public key of the payee. Transactions form a
chain of coin transfers. To transfer money, the owner of the
coins signs the transfer using the private key that matches
the public key in the transaction that granted her/him the
coins. Given coins and the transaction t that granted them,
only someone who possesses the private key that matches
the public key in the transaction t can spend the coins, i.e.,
transfer them on. In many blockchains, user identities are
not revealed, to provide anonymity, hence, money transfer
is between wallets, where a user may have many wallets.

We denote by t = (x → y,m) a transaction that transfers
m coins from wallet x to wallet y. We denote by t = (→
y,m) a transaction that grants m coins to y as a reward.

To prevent double spending, the transactions are added
to the blockchain and are publicly visible. The chain defines
a serialization of the transactions, so that if two transac-
tions transfer the same coins (double spending), after the
insertion of one of the transactions into the blockchain, the
other transaction is considered invalid, and should not be
added to the blockchain. The blockchain, thus, represents a
consensus of the peers on what are valid transactions.

The transactions are organized into blocks, which are cre-
ated and added to the blockchain by members of a peer-
to-peer network. In Bitcoin, these peers are called miners.
The first block in the chain is the genesis block. Every other
block contains a hash of the previous block in the chain,
e.g., using SHA-256. This means that a change in one of
the blocks would either result in an incorrect chain or would
require changing the hash values in all the following blocks.

A blockchain is maintained in a decentralized manner. It
is immutable, where changes of past blocks are practically
impossible. To achieve that and to prevent forks, where a
separation of the chain cannot be resolved, blockchains like
Bitcoin rely on proof-of-work (PoW)—a computation that
is hard and time consuming, e.g., a cryptographic riddle.
In Bitcoin, each block includes a nonce such that the hash
of the block (with the nonce) has at least k leading zeros.
Computing the nonce is hard, hence it is a PoW. The value
k is determined such that the overall computation by all
the peers (miners) would require approximately 10 minutes
for computing a block. In a case of a conflict, or a fork,
miners are expected to add blocks to the longest branch.
This causes short branches to be abandoned and prevents
forks. A block that contains invalid transactions, e.g., dou-
ble spending, will be ignored by the majority of the peers,
and eventually will not be part of the chain.

An attacker that tries to change a block in the blockchain
needs to create an alternative branch and compete with all
the other miners, in an attempt to make the alternative
branch the longest one. The chances of succeeding are slim,
due to the hardness of block creation. This provides im-
mutability, stability and reliability. A comprehensive survey
of blockchain technologies is provided in [1].

17

Figure 1: Issuing a location certificate for a re-
quester (left) by a corroborator (right).

2.2 Location Certificate
Geospatial partition is natural in many blockchain appli-

cations. It is based on reliably mapping transactions to their
location and time, and providing a certificate of that. The
location certificate is a digital proof that a device was at a
particular place at a specific time. GPS cannot be used for
that because GPS can be spoofed [38].

One way to produce location certificates is based on the
existence of a trusted localized corroborators that could pro-
vide the certificate [20]. A localized corroborator is a server
that has a known location, and that can only be accessed
from a short range. It can be a server that is directly, phys-
ically, connected to stationary devices. For mobile devices
it can be a cellular tower, a wireless access point (Wi-Fi,
Bluetooth, ZigBee), an optical access point (based on in-
frared light), etc. A device can only be connected to the
localized corroborator if it is near the corroborator—a few
meters in a case of Bluetooth, ZigBee or infrared sensor;
dozens of meters for Wi-Fi; and a few kilometers for a cel-
lular tower. Higher accuracy can be achieved by taking the
signal strength into account [30, 44, 45]. The trustworthi-
ness of certificates can be strengthen by adding cryptograph-
ically signed geotags to IP packets [11]. We assume that the
corroborator has a unique pair of a private key and a public
key, as part of a public-key cryptosystem.

For our purposes, we consider issuing a location certificate
for a device that holds a specific private key—the private key
remains concealed and only the public key is revealed to the
corroborator or to a verifier. For a given pair (kpriv, kpub) of
private and public keys, the certificate attests that a device
containing the private key kpriv was near the corroborator
at the time of the issuing.

The protocol involves the following steps.

1. The requester sends an initiation message to the server,
including the public key kpub.

2. The corroborator sends a random session id sid to the
requester.

3. The requester sends back the session id sid signed using
the private key kpriv.

4. The corroborator checks the time that elapses between
sending sid and getting it back (signed) and verifies
the authenticity of the signature using kpub. When
the time difference is a few milliseconds (less than a
threshold of say 5 milliseconds), the corroborator is-
sues a certificate consisting of the time, location and

requester public key kpub, signed by the private key of
the corroborator.

The requester cannot create a certificate without the cor-
roborator because a valid certificate requires the signature
of the corroborator. The session id can only be signed after
the beginning of the session, because it is unknown before
the session starts. Therefore, after the session initiation, a
device that can sign the session id with kpriv must be near
the corroborator, to provide a response in a latency that is
smaller than the threshold. The certificate can include a
precise location or a general one, e.g., a city, a county, a
state, to increase privacy.

A certified transaction is a pair (t, C) of a transaction
t = (x → y,m) and a location certificate C, where the public
key of y is used to create the certificate. As explained, the
certificate is created by a device that at the certified time is
near the corroborator and contains the private key of y.

3. BLOCKCHAIN PARTITIONING
We present now our partitioning approach. In public

blockchains like Bitcoin and Ethereum, the transaction rates
are low. One of the reasons for the low transaction rate is the
serialization of all the transactions, even those that are not
conflicting. Had there been a partition of the transactions
into groups so that transactions from different groups could
never conflict, non-conflicting transactions could have been
processed in parallel, and blocks of non-conflicting transac-
tions could have been generated in parallel. This can be
achieved by creating a partition of the blockchain into a hi-
erarchy of blockchains (sub-chains) and associating transac-
tions with different nodes of the hierarchy. Each sub-chain is
managed independently, so blocks of different sub-chains can
be created and added to the appropriate chain in parallel.

The study of parallel creation of blocks led to the devel-
opment of the BlockDAG data structure, where a new block
can extend several previous blocks, not just one, and the
“heaviest” tree is selected in a greedy fashion, e.g., using the
GHOST protocol [34]. The SPECTRE protocol [33] utilizes
BlockDAG for a virtual vote on the order of the blocks, to
achieve high throughput and fast confirmation time. Two
other notable attempts to cope with the low transaction
rates in public blockchains are Bitcoin-NG [14] and Algo-
rand [17]. Bitcoin-NG speeds up block creation by electing
a leader for a specified epoch, and allowing the leader to cre-
ate a large number of blocks till the next leader is elected.
Algorand employs a sophisticated method of randomly se-
lecting a small group of users (who are replaced when their
identity is revealed) and executing a Byzantine Agreement
protocol by the chosen users, to prevent forks altogether.
Our approach is orthogonal to these systems. First, in a
hierarchy of linked sub-chains, any blockchain implementa-
tion can be used, including Bitcoin, Bitcoin-NG, Algorand,
and others. The hierarchical structure may even link differ-
ent types of blockchain. Second, scalability is achieved by
adding new sub-blockchains to the hierarchy without chang-
ing the technology or performing a hard fork.

Different hierarchies can be used. Geospatial hierarchy is
a natural one, e.g., a partition into neighborhoods, cities,
counties, states and countries. Such a partition is suitable,
for example, when using blockchains to record real-estate
transactions. Another partition example is a partition into
business units of a large global company, e.g., teams, depart-

18

ments, divisions, sub-organizations, etc. Such a partition
can be applied when a company ledger is used for recording
processes, data sharing, code transfer, etc.

We elaborate on geospatial partition. Our underlying as-
sumption is that most transactions are local, e.g., cash ex-
change is often between people who are geographically near,
and this may also be true in a cryptocurrency that aims to
replace cash. Other usages of geospatial partition are real
estate transactions, supply chains, management of data in
smart cities, and so on. The hierarchy provides a tradeoff
between privacy and efficiency, where local transactions are
more efficient and non-local ones are more private.

A localized blockchain is defined with respect to a given
area A, e.g., the area of the USA. Localization is with respect
to a hierarchical partition of A, and each wallet is associated
with a sub-area in A.

Example 1. In a hierarchical partition of the USA, the
country is partitioned into states, states are partitioned into
counties, and counties are partition into cities and towns.
A transaction within a city is registered merely in the city.
A transfer of coins from a city in one county to a city in
another, within the same state, is registered in the relevant
cities, counties and the state. A transfer across states is
recorded in all the levels of the hierarchy.

The partitioning of the blockchain makes local transac-
tions faster and cheaper than non-local ones, because a local
transaction is notarized for a local area and“competes”with
less transactions. When moving higher in the hierarchy, each
transaction may need to compete with transactions from a
wider area—this will increase privacy, but also expected to
increase the transaction delay (i.e., lengthen the wait time
till the transaction is recorded in the blockchain).

The hierarchy is the result of a recursive partitioning of A.
Formally, let A be a set of subareas of A. The hierarchical
partition H = (T,α) of A comprises a tree T = (V,E, vroot)
and a function α : V → A, where V , E, and vroot are the
vertexes, edges and root of T , respectively. The function α
maps each vertex v to a subarea in A, such that for each
node v that is not a leaf it must hold that: (1) α(v) =
∪u∈children(v)α(u), and (2) α(u1) ∩ α(u2) = ∅ ∀u1 ̸= u2 ∈
children(v). That is, the areas associated with the children
of a vertex v are a partition of the area associated with v.

A wallet is localized by associating it to a node of H. Let
W be the set of all wallets, then λ : W → V is a function that
maps wallets to nodes of H. A wallet w ∈ W is associated
with the area α(λ(w)). A transaction t = (x → y,m) is local
if λ(x) = λ(y) is a leaf of H. Otherwise, the LCA of t is
the least-common ancestor lca(x, y) in T . The area of t is
α(lca(x, y)).

Certification. A certification requirement allows only
processing of certified transactions (t, C). When including a
certified transaction in a blockchain, it is required to verify
that the certificate C is valid and includes the public key of
the receiving wallet y. The location in C should be inside
the area of the receiving wallet, i.e., in α(λ(y)).

We consider three types of transfers. A lateral transfer
between wallets in the same node. An ascending transfer
from a wallet in a node v to a wallet in the parent of v. A
descending transfer from a wallet in a node v to a wallet
in a child of v. The blocks of each node of H are managed
separately from the blocks of the other nodes, with a dis-
tinct chain for each node. To increase the efficiency, blocks

Figure 2: Hierarchical partitioning and a transfer.

associated with different nodes can be created in parallel.
To prevent double spending, each transaction t = (x →

y,m) must be added to the blockchain of the node associated
with x, to get accepted. The transaction t′ = (y → z, n) that
follows t is added to the blockchain of the node associated
with y. A local transaction that is related to node v is added
to blockchain(v), as a lateral transfer. A non-local transac-
tion from x to y is translated to a sequence of transfers along
the shortest path from x to y in T .
For example, a transfer of coins within Chicago is local

and requires a single lateral transfer. A transfer from a
wallet of user u1 in Newark, NJ to a wallet of u2 in Jersey
City, NJ requires the five transfers depicted in Fig. 2.

The geographic partition can be done in different ways
depending on how people use money. Several transfers are
needed for non-local transactions, but blocks of different
chains are created in parallel. For anonymity, users can
choose the level at which they execute transactions—a higher
level provides a more obfuscated exposure of the user loca-
tion. There is, however, a tradeoff between privacy and the
time that elapses till a transaction is added to the blockchain.

Non-geographic partitions could be applied as well. In
a large corporation, for instance, a partition based on the
divisions and subdivisions of the company could be used to
manage company transactions, as in the geospatial partition.

Geofencing. Partitioning of blockchains can be used to
strengthen security. We describe geofencing as an example.

A private key of a wallet can be stolen, which may lead
to the loss of the coins. By geofencing wallets, coins can be
more secure. In geofencing, a wallet is associated with an
area, as explained in Section 3. For executing a transaction,
the payee needs to provide a location certificate for a place
within the area of the payer’s wallet, at the time of the trans-
action. If, for example, Alice associates her wallet with her
neighborhood, a malicious attacker from a different country,
say Mallory, would be limited in her ability to spend the
money. Even if Mallory would steal the private key of Alice,
to create a certificate and transfer the coins she would need
to have a device in Alice’s neighborhood with the private
key of the receiving wallet. If Mallory would use as a proxy
a device in Alice’s neighborhood, to create a certificate on
her behalf, she would need to surrender her private key to
the proxy. Hence, the taken money could be spent by the
proxy. This would make cryptocurrencies more secure. The
stronger security would also make it safer to create backups
for a lost key. Note that Alice could transfer money from
her local wallet to a wallet associated with her state, if she
wants to use the money when traveling within the state.

19

Geofencing can be done by requiring a certificate from the
payee, the payer or from both, to restrict, at the time of the
transaction, the location of the payer, the payee or of both.
Note that geofencing strengthens the security provided by
the private keys, it does not replace private keys. There is
a tradeoff between security and privacy here—smaller area
provides more security but less privacy, and vice versa.

Geofencing can be applied to various applications of block-
chain, e.g., in a blockchain that supports a supply chain,
transactions of item transfer could be limited to the ware-
houses, i.e., they could only be recorded at the warehouses,
to provide strict control over transfers and their registration.

4. PROOF-OF-LOCATION
Blockchains that are based on Proof of Work (PoW) are

wasteful, that is, consume an excessive amount of energy.
A partition of the blockchain could increase the amount of
energy that is required to sustain the system. In this section
we show how location certificates can be used to establish
Proof-of-Location as a non-wasteful alternative to PoW, to
achieve consensus in a public blockchain.

4.1 Proof of Work
Over the years, PoW has been proven to be a success-

ful and reliable consensus mechanism for a public (permis-
sionless) blockchain like Bitcoin, and capable of preventing
a Sybil Attack [13]. Its main limitation, however, is the
immense energy consumption that is required to maintain
the system. Miners who create a block are rewarded for
that by receiving transaction fees or a block-creation incen-
tive. They compete to create blocks, and thus, many miners
spend significant computation power on finding a suitable
nonce, for each block. Furthermore, if miners would col-
lude, they could issue a 51% attack or in some cases, even a
25% attack [15]. This is a real threat because Bitcoin min-
ers are already organized into large groups and share their
computational resources to create blocks [16].

4.2 Alternatives to PoW
Several methods were proposed as an alternative to PoW.

One of them is proof-of-stake (PoS) [6, 7, 22], where the vot-
ing power is given to “stake holders” of the system, i.e., to
those who have coins. The creator of a block needs to pro-
vide a cryptographic proof of existence of a certain amount
of coins in its possession, and these coins are locked till some
conditions are met. This approach was criticized as non-
resilient to forks, since, unlike in PoW, the expected gain
from working on more than one branch is often higher than
the cost of doing so. Furthermore, in this method peers with
many coins could delay the creation of new blocks (when
they are selected to create the next block) and could use
that for extortion, or in an attempt to attack the system for
an external gain [23].

In proof-of-disk-space the creators of blocks need to waste
disk space to create a block [27, 29]. Like PoW, it is a
wasteful approach. A consensus protocol to cope with the
case where an unknown number of peers could be offline was
suggested in [28].

Several solutions were designed for private (permissioned)
blockchains, see an analysis in [12]. Practical Byzantine
Fault Tolerance (PBFT) [9, 41] was proposed as a method
to reach consensus by voting, but it requires knowing the
number of peers, so it is unsuitable for a public blockchain in

which joining the peer-to-peer network is open to the public.
Proof of authority3 was developed for private blockchains,
with trusted entities as authorities. It relies on establishing
trust in the peer-to-peer network, e.g., see [43].

4.3 Implementing PoL
We introduce now proof-of-location (PoL)—a novel alter-

native to PoW. It aims to avoid waste when creating a block,
and yet keep the process decentralized and independent of
knowledge about the reputation of peers, or their number.
It is based on the ability to create a location certificate to
provide a location proof [20, 31, 32], for a particular place,
to create the next block.

Block creation. The blockchain is created such that
a location ℓ is selected in each step, in an unpredictable
way, and the next block is the one that was created by the
peer with the PoL closest to the selected location. If two
location certificates have the same distance from the selected
location, the one with the smallest time stamp is selected.

The selection of a location ℓ can be done in different ways.
One way is as follows. Consider the geographical area in
which the block creators (peers) are active, e.g., USA. Let
G be a grid that covers this area. Let c1, . . . , cm be the cells
of G. Let B be the last block in the blockchain, so far, and
h(B) the hash of B. The selected location is the center of
the cell number h(B) mod m, i.e., ch(B) mod m of G. This
yields a cell whose coordinates cannot be computed without
knowing B. Note that for a hash function h whose digest has
a size of 256 bits, even if the remainder of the division 2256/m

is non-zero, the difference between
⌊

2256

m

⌋

and
⌊

2256

m

⌋

+ 1 is

negligible, so if h is uniform then the selection of cells can,
practically, be regarded as uniform.

To control the hardness of block creation, so that an at-
tacker could not create an alternative branch fast, we suggest
that the distance of the certificate from ℓ would be limited
by an adaptable inflating bound. One option to do so, is
as follows. Let tprev be the creation time of the last block.
The inflating distance limit is d(t) = δ ·minutes(t− tprev)

k,
for given k and δ. A location certificate with location and
time (lp, tp) satisfies the distance limit if distance(lp, ℓ) <
d(tp). For k = 3 and δ = 100 meters, in the first minute
(time difference < 1), the certificate should be for a loca-
tion that is less than 100 meters from ℓ. In the second
minute (time difference < 2), the certificate should be for
a location that is less than 800 meters from ℓ. The dis-
tance limit (in meters) as a function of the time difference
(in minutes) evolves as follows: (2, 800), . . . , (4, 6400), . . . ,
(8, 512, 000), . . . , (10, 100, 000), With these parameters,
the distance limit is 100 kilometers after 10 minutes, and
covers the area of the USA after about half an hour. (These
parameters can be changed to control the block creation
rate, and guarantee that blocks will be created within a rea-
sonable time.)

An attacker that would try to change a block and then cre-
ate the longest branch, by competing with the other miners,
would need to produce location certificates faster than the
other miners. However, without a machine and a corrobo-
rator near any arbitrary location ℓ, the attacker would need
to wait, e.g., if its nearest machine to ℓ is 100 kilometers, it
would need to wait 10 minutes, and at that time the other

3
https://github.com/paritytech/parity/wiki/Proof-of-Authority-

Chains

20

miners would add blocks to the main chain. Note that with
machines that cover an area of 10 km2, about 1,000,000 ma-
chines would be needed to cover the area of the USA.

An advantage of the proposed method is that, unlike in
Bitcoin, if the locations of the peers (miners) are arbitrary,
a group of miners that collude do not have an advantage
over a group that do not collude. This would make the
system less vulnerable to colluding peers. Furthermore, for
an attacker it will be hard to create blocks fast, even with
a large computation power, because the computation power
would not help arriving at ℓ or getting close to ℓ faster.

Fork Prevention. When two or more branches are con-
structed in parallel without being abandoned, forks occur.
Forks cause the blockchain to be less reliable, and reduce
consistency. To cope with that, the rule of thumb is that
the miners would continue the longest branch so far. But
there is also a need to discourage the miners from extend-
ing other branches. In PoW, the computation of a nonce is
demanding, so miners have an incentive to invest their com-
putation power only on the branch with the highest chance
of success (the longest one). This can be achieved in PoL if
there would be a cost to each certificate, e.g., where miners
would pay to the corroborators for each creation of a loca-
tion certificate. (Note that in PoW miners pay for block
creation in their electricity bills.) A payment would encour-
age miners to only “invest” in a branch with a high chance
of success. The payment can be adaptive, e.g., including ℓ
in the certificate and making the fee proportional to the dis-
tance between the corroborator and ℓ, to discourage miners
that are geographically far from ℓ from creating a block.

Effect on Miners. In PoL, the miners create location
certificates and reveal their location. This, however, does
not affect users, i.e., there is no disclosure of the locations
of the payers or the payees whose transactions are added to
a block. It is an open question, however, whether reveal-
ing the location of miners is much different from revealing
their IP addresses, as being done anyway in the peer-to-peer
network. (Miners can hide their IP address, e.g., by using
onion routing [18], but this would slow them down in the
“race” to create a block. Such a tradeoff between privacy
and effectiveness can be made also in PoL, where a miner
may decide only to create location certificates by a mobile
device when she/he is far from her/his home or office.)

Decentralized System. In PoL, the system remains de-
centralized, because location certificates are not produced by
a single entity. The certificate may be produced by different
companies and organizations using network access points,
e.g., modifying all the cell towers to serve as corroborators.
A company that would not provide reliable certificates, the
blocks with its certificates would not be accepted by the
majority of the miners, and hence, users will stop acquir-
ing certificates from it. Hence, the incentive of certificate
providers to be honest is similar to that of miners in a pub-
lic blockchain like Bitcoin.

Sybil Attack. To create a certificate there is a need
to be near the corroborator. Therefore, forging many iden-
tities that are located in a single place does not increase
the ability to create a block if PoL is used. Also, having
more machines or stronger machines in proximity to a sin-
gle corroborator does not give an advantage. A miner could
try to deploy many machines in many remote places. This,
however, would require investment in equipment and would
incur maintenance costs, and unlike Bitcoin mining farms

could not be in a single location.
An attacker may try to apply cryptojacking, i.e., use ma-

chines of other users to create location certificates, somewhat
like unauthorized use of machines for Bitcoin mining. But in
such a case, to create the certificate, the attacker would need
to expose the private key of the wallet that would receive the
incentive fee (this key is necessary to create the certificate).
Any hijacked machine would then have the private key that
would allow it to spend the new coins.

To increase security, there should be many corroborators
distributed over a large area. More importantly, each cor-
roborator should have a different private key—if the security
of a corroborator will be breached, using its key for creating
fake certificates would be limited to a single location.

5. CONCLUSION AND DISCUSSION
Blockchain has the potential to revolutionize data sharing

among organizations and individuals, by providing a decen-
tralized, transparent and tamper-proof storage of transac-
tions. It is the underlying technology of many cryptocur-
rencies, and is adapted for other uses. However, currently
blockchains are not scalable (they have a low transaction
rate), and public blockchains are wasteful (require a high
usage of electricity to support PoW), and insecure (provide
no protection from theft of a private key). In this paper, we
present a novel approach of partitioning the blockchain into
a tree of sub-chains based on a real-world hierarchy, like a
geographical or an organizational partition, where transac-
tions of different sub-chains do no conflict with one another.
Such a partition provides a tradeoff between efficiency and
privacy—high levels provide more privacy than low levels
but a longer expected wait till the transaction is added to a
block, and vice versa. Scalability can be achieved by parti-
tioning leaf nodes in which the transaction rate is too high.
Creating an optimal hierarchy and adapting the hierarchy
to changes are challenging research directions.

An important advantage of the hierarchical partitioning is
that there is no need to develop a new technology or perform
hard forks to cope with scalability issues. The recent debate
about how to increase the block size of Bitcoin illustrates
how difficult it is to make changes in public blockchains.

We explain how a geographic partitioning combined with
location certificates can be used to increase security by ap-
plying geofencing. With the growing popularity of cryp-
tocurrencies and their usage in applications that do not re-
quire privacy, strengthening security by restricting usage of
coins to specified locations could proliferate utilization of
cryptocurrencies. How to further increase security of cryp-
tocurrencies at the expense of privacy, but without com-
pletely revealing user identities, is an open question.

The partition of the blockchain may inflate the excessive
energy consumption cause by PoW. Thus, we suggest a novel
non-wasteful proof-of-location (PoL) method, to achieve con-
sensus for block creation. In PoL, unlike PoW or PoS, having
a strong computation power or many coins does not increase
the chances of creating the next block. This has the poten-
tial of providing higher stability than that of PoW or PoS,
however, further research is required to prove that.

Note that our vision of using partitions to create sub-
chains can be generalized from hierarchies to a network of
blockchains, e.g., by connecting existing blockchains. We
defer a detailed discussion in the interest of space.

21

6. REFERENCES
[1] D. T. T. Anh, M. Zhang, B. C. Ooi, and G. Chen.

Untangling blockchain: A data processing view of
blockchain systems. IEEE Transactions on Knowledge
and Data Engineering, 2018.

[2] D. Augot, H. Chabanne, T. Chenevier, W. George,
and L. Lambert. A user-centric system for verified
identities on the bitcoin blockchain. In Data Privacy
Management, Cryptocurrencies and Blockchain
Technology, pages 390–407. Springer, 2017.

[3] D. Augot, H. Chabanne, O. Clémot, and W. George.
Transforming face-to-face identity proofing into
anonymous digital identity using the bitcoin
blockchain. arXiv preprint arXiv:1710.02951, 2017.

[4] A. Back. Hashcash–a denial of service
counter-measure, 2002.

[5] N. Baracaldo, L. A. D. Bathen, R. O. Ozugha,
R. Engel, S. Tata, and H. Ludwig. Securing data
provenance in internet of things (IoT) systems. In
International Conf. on Service-Oriented Computing,
pages 92–98, 2016.

[6] I. Bentov, A. Gabizon, and A. Mizrahi.
Cryptocurrencies without proof of work. In
International Conference on Financial Cryptography
and Data Security, pages 142–157. Springer, 2016.

[7] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld.
Proof of activity: Extending bitcoin’s proof of work
via proof of stake. ACM SIGMETRICS Performance
Evaluation Review, 42(3):34–37, 2014.

[8] K. Biswas and V. Muthukkumarasamy. Securing
smart cities using blockchain technology. In High
Performance Computing and Communications; IEEE
14th International Conference on Smart City; IEEE
2nd International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), 2016 IEEE 18th
International Conference on, pages 1392–1393. IEEE,
2016.

[9] M. Castro and B. Liskov. Practical byzantine fault
tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20(4):398–461, 2002.

[10] M. Crosby, P. Pattanayak, S. Verma, and
V. Kalyanaraman. Blockchain technology: Beyond
bitcoin. Applied Innovation, 2:6–10, 2016.

[11] T. Dasu, Y. Kanza, and D. Srivastava. Geotagging IP
packets for location-aware software-defined networking
in the presence of virtual network functions. In
Proc. of the 25th ACM SIGSPATIAL International
Conf. on Advances in Geographic Information
Systems. ACM, 2017.

[12] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi,
and K.-L. Tan. BLOCKBENCH: a framework for
analyzing private blockchains. In Proc. of the ACM
International Conf. on Management of Data, pages
1085–1100, 2017.

[13] J. R. Douceur. The sybil attack. In International
Workshop on Peer-to-Peer Systems, pages 251–260.
Springer, 2002.

[14] I. Eyal, A. E. Gencer, E. G. Sirer, and
R. Van Renesse. Bitcoin-NG: A scalable blockchain
protocol. In NSDI, pages 45–59, 2016.

[15] I. Eyal and E. G. Sirer. Majority is not enough:
Bitcoin mining is vulnerable. In International

Conf. on Financial Cryptography and Data Security,
pages 436–454, 2014.

[16] A. Gervais, G. Karame, S. Capkun, and V. Capkun. Is
bitcoin a decentralized currency? IEEE security &
privacy, 12(3):54–60, 2014.

[17] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and
N. Zeldovich. Algorand: Scaling byzantine agreements
for cryptocurrencies. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages
51–68. ACM, 2017.

[18] D. Goldschlag, M. Reed, and P. Syverson. Onion
routing. Communications of the ACM, 42(2):39–41,
1999.

[19] M. Jakobsson and A. Juels. Proofs of work and bread
pudding protocols. In Secure Information Networks,
pages 258–272. Springer, 1999.

[20] Y. Kanza. Location corroborations by mobile devices
without traces. In Proc. of the 24th ACM
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, 2016.

[21] Y. Kanza and H. Samet. An online marketplace for
geosocial data. In Proc. of the 23rd SIGSPATIAL
International Conference on Advances in Geographic
Information Systems. ACM, 2015.

[22] A. Kiayias, A. Russell, B. David, and R. Oliynykov.
Ouroboros: A provably secure proof-of-stake
blockchain protocol. In Annual International
Cryptology Conference, pages 357–388. Springer, 2017.

[23] J. A. Kroll, I. C. Davey, and E. W. Felten. The
economics of bitcoin mining, or bitcoin in the presence
of adversaries. In Proceedings of WEIS, 2013.

[24] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu.
Blockchain based data integrity service framework for
IoT data. In Web Services (ICWS), 2017 IEEE
International Conf. on, pages 468–475, 2017.

[25] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system, 2008.

[26] K. J. O’Dwyer and D. Malone. Bitcoin mining and its
energy footprint. In 25th IET Irish Signals & Systems
Conference, Limerick, Ireland, 2014. IET.

[27] S. Park, K. Pietrzak, J. Alwen, G. Fuchsbauer, and
P. Gazi. Spacecoin: A cryptocurrency based on proofs
of space. Technical report, IACR Cryptology ePrint
Archive, 2015.

[28] R. Pass and E. Shi. The sleepy model of consensus. In
International Conf. on the Theory and Application of
Cryptology and Information Security, pages 380–409,
2017.

[29] L. Ren and S. Devadas. Proof of space from stacked
expanders. In Theory of Cryptography Conference,
pages 262–285. Springer, 2016.

[30] S. Saha, K. Chaudhuri, D. Sanghi, and P. Bhagwat.
Location determination of a mobile device using IEEE
802.11 b access point signals. In Wireless
Communications and Networking, volume 3, pages
1987–1992. IEEE, 2003.

[31] S. Saroiu and A. Wolman. Enabling new mobile
applications with location proofs. In Proc. of the 10th
Workshop on Mobile Computing Systems and
Applications. ACM, 2009.

[32] N. Sastry, U. Shankar, and D. Wagner. Secure

22

verification of location claims. In Proceedings of the
2nd ACM workshop on Wireless security, pages 1–10.
ACM, 2003.

[33] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. Spectre:
A fast and scalable cryptocurrency protocol. IACR
Cryptology ePrint Archive, 2016:1159, 2016.

[34] Y. Sompolinsky and A. Zohar. Secure high-rate
transaction processing in bitcoin. In International
Conference on Financial Cryptography and Data
Security, pages 507–527. Springer, 2015.

[35] J. Sun, J. Yan, and K. Z. Zhang. Blockchain-based
sharing services: What blockchain technology can
contribute to smart cities. Financial Innovation,
2(1):26, 2016.

[36] M. Swan. Blockchain: Blueprint for a new economy. ”
O’Reilly Media, Inc.”, Sebastopol, CA, USA, 2015.

[37] D. Tapscott and A. Tapscott. Blockchain Revolution:
How the Technology Behind Bitcoin Is Changing
Money, Business, and the World. Penguin Random
House, New York, NY, USA, 2016.

[38] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and
S. Capkun. On the requirements for successful gps
spoofing attacks. In Proceedings of the 18th ACM
conference on Computer and communications security,
pages 75–86. ACM, 2011.

[39] S. Underwood. Blockchain beyond bitcoin. Commun.
ACM, 59(11):15–17, Oct. 2016.

[40] P. Vigna and M. J. Casey. The age of cryptocurrency:
How bitcoin and digital money are challenging the
global economic order. St. Martin’s Press, New York,
NY, 2015.

[41] M. Vukolić. The quest for scalable blockchain fabric:
Proof-of-work vs. BFT replication. In International
Workshop on Open Problems in Network Security,
pages 112–125. Springer, 2015.

[42] N. Vyas. Disruptive technologies enabling supply chain
evolution. Supply Chain Management Review, 2016.

[43] L. Xiong and L. Liu. Peertrust: Supporting
reputation-based trust for peer-to-peer electronic
communities. IEEE transactions on Knowledge and
Data Engineering, 16(7):843–857, 2004.

[44] K. Yedavalli and B. Krishnamachari. Sequence-based
localization in wireless sensor networks. IEEE
Transactions on Mobile Computing, 7(1), 2008.

[45] K. K. Yedavalli. Location Determination using IEEE
802.11 b. PhD thesis, University of Colorado, 2002.

23

Blockchain Protocols: The Adversary is in the Details

Rachid Guerraoui
EPFL

rachid.guerraoui@epfl.ch

Matej Pavlovic
EPFL

matej.pavlovic@epfl.ch

Dragos-Adrian Seredinschi∗
EPFL

dragos-adrian.seredinschi@epfl.ch

ABSTRACT

Blockchain-like protocols are flourishing. Maybe not surpris-
ingly, the differences among these protocols are often subtle
and difficult to understand. More importantly, it is often
unclear what the weaknesses of each of these protocols are
and how easily they can be attacked. The goal of this paper is
to shed light on the important differences between blockchain
protocols and the impact these differences can have in terms of
their vulnerabilities. We cover well-studied protocols ranging
from those inspired from the distributed systems literature
(e.g., PBFT), to recent research prototypes (e.g., ByzCoin or
Algorand), including the popular Bitcoin protocol.

Towards reaching our goal, we first precisely define the
problem that these protocols seek to solve. Then we propose
a unifying scheme that captures, at a high level, the behavior
of any blockchain protocol. Interestingly, this scheme is also
sufficiently low level to highlight the important differences be-
tween these protocols. We show that blockchain-like protocols
can be differentiated according to their degree of indulgence—
i.e., tolerance towards node misbehavior or towards network
asynchrony—which translates into the different vulnerabilities
of each of these protocols.

1. INTRODUCTION
Since the advent of Bitcoin, tens—if not hundreds—of vari-

ations on this protocol have been proposed. These variations,
which we call simply Bitcoin-like protocols, usually have a
twofold purpose: (1) to improve reliability with respect to the
original Bitcoin protocol by withstanding severe attacks, or (2)
to improve efficiency by either decreasing latency or increasing
throughput. Usually, these objectives are antagonist. For ex-
ample, decreasing the time it takes to commit a transaction in
a blockchain protocol can make that protocol more vulnerable
to double spending [22].

The differences between various blockchain protocols are
often subtle, and each improvement to a certain protocol may

∗This work has been supported in part by the European ERC
Grant 339539 - AOC

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribu-
tion and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and FAB 2018.
Symposium on Foundations and Applications of Blockchain (FAB ‘18)
March 9, 2018, Los Angeles, California, USA.

open vulnerability breaches which are not clear a priori. For
instance, it is perhaps alarming to see the recent uncovering
of critical errors in algorithms that can be used to implement
blockchains, namely in Tangaroa [10], Zyzzyva and FaB [3].
This makes the current blockchain ecosystem very chaotic,
which, to say the least, is rather disappointing, given that these
protocols are mainly aimed at implementing distributed trust.

The motivation of this paper is to help clarify this state of
affairs. Our aim is not a rigorous formalization of a specific
blockchain protocol and its properties, as done in a signifi-
cant body of related work [8, 18, 29]. Instead, we propose
a high-level, adversary-oriented approach to deconstructing
blockchain protocols. Ultimately, our goal is to offer a bet-
ter understanding of blockchain variations (e.g., efficiency or
reliability enhancements), discussing which variation opens
which vulnerability breach. Our principled approach is in-
spired from the theory of distributed computing. As we will
recall, blockchain protocols are solving a classical distributed
computing problem. We proceed in several steps.

First, we define precisely the blockchain problem, namely
the problem that seeks to be solved by the original Bitcoin
protocol and its many variants. Roughly speaking, the problem
consists of building a highly available (replicated) set of single
owner bank accounts while avoiding double spending. Indeed,
blockchain is both the name of (a) the chain of transaction
blocks that need to be replicated and maintained consistently
to enable Bitcoin transactions, as well as (b) the protocol that
maintains this consistency. In a sense, blockchain is the name
of the solution (b), as well as the name of the problem (a) being
solved. Whilst solutions have been discussed at great length,
we believe the problem specification has been largely ignored.

We define the problem precisely in terms of safety and live-
ness properties [5]. We then use classical results in distributed
computing to highlight how the blockchain problem is harder,
for example, than building a replicated file system [7], but is
equivalent to the celebrated consensus [31] and State Machine
Replication (SMR) problems [32]. It is known that there is
no deterministic solution to consensus if we assume that the
network can be asynchronous and at least one node can crash
(even if no node can act adversarially) [17]. No matter what
solution is designed, adverse network conditions can defeat it.

We then present a general scheme that unifies solutions to the
blockchain problem. We show how all solutions to this problem
restrict the power of the adversary in one way or another, e.g.,
either by assuming a bound on the number of misbehaving
nodes which an adversary controls, or by assuming a bound on
network asynchrony. We study here well-known protocols like
PBFT [11] or Bitcoin [27], as well as recent research efforts

24

such as ByzCoin [24], Bitcoin-NG [15], and Algorand [19].
In short, our general scheme builds upon two fundamental

components: a leader election subprotocol and a commitment
subprotocol. The goal of the first subprotocol is to elect a node
(or a set of nodes) to lead the task of ordering transactions. The
goal of the second subprotocol is to make sure the ordering is
global and the decision is unique, in case a new (or concurrent)
leader is elected and considers a different ordering. This intu-
itive decomposition helps describe the avenues for attack which
an adversary can take to subvert a blockchain protocol. It also
enables us to point out critical differences between blockchain
protocols as well as draw parallels between protocols.

We point out the existence of two classes of protocols. A
protocol which represents the first class is Castro and Liskov’s
PBFT [11]. This class of protocols preserves its safety prop-
erty, namely, consistency, despite the harshest conditions of
the network (i.e., asynchrony). We say that this class is in-
dulgent towards asynchrony and call it asynchrony-indulgent
(or A-indulgent). A representative of the second class is Bit-
coin [27]. This protocol continues executing (i.e., preserves
liveness) despite an adversary mounting a Sybil attack, pol-
luting the system with many misbehaving nodes. We say that
this protocol is behavior-indulgent (or B-indulgent).

We organize the rest of this paper as follows. We discuss the
problem addressed by blockchain protocols through the lens
of distributed computing, and introduce the A-indulgent and
B-indulgent classes of blockchain protocols (§2). We then in-
troduce a general scheme which captures the essential behavior
of any blockchain protocol, and use this scheme to discuss two
notable blockchain protocols—PBFT and Bitcoin—showing
how each is a typical example of respectively the A-indulgent
and B-indulgent class (§3). We also relate a few other protocols
to our general scheme and discuss their indulgence (§4), and
then we conclude this paper (§5).

2. THE PROBLEM

2.1 State Machine Replication and Consensus
On-line services often employ replication to ensure their

availability despite failures in the underlying systems. A com-
mon method to achieve this is via state machine replication
(SMR) [32]. In SMR, a service, such as a financial ledger or an
online shopping cart, is modeled as a deterministic state ma-
chine. The service consists of (1) a service state, and (2) opera-
tions that can be applied on this state. Typically, each replica
(or node) of the system maintains its own local copy of the state,
and updates this state as a result of applying client operations.

In SMR, the operations have to be deterministic, i.e. the
operation result and the new state it produces are a function
of only the previous state and the operation itself. Any service
state can thus be uniquely defined by the initial state and a
sequence of operations applied on this initial state.

In order to keep the service state consistent, replicas need to
apply the same operations in the same order. In other words,
SMR requires that the sequence of operations applied at all
replicas is the same; the main challenge in implementing SMR
is ensuring this requirement. The challenge can be reduced to
the fundamental problem of consensus (agreement) in a dis-
tributed system, where all replicas need to agree on what the
n-th operation of the sequence will be, for an ever-increasing
n. In Figure 1 we sketch the typical architecture of an SMR
system as we have presented it so far. The system comprises
6 replicas, labeled from 0 to 5. At the heart of the system

Client

Replica

SMR

Consensus

Operation

1 2 N
…

State Operations

system

…

0

1

234

5

…
…

Figure 1: State Machine Replication in action.

lies a distributed consensus algorithm which the replicas use
to agree on the sequence of incoming client operations and
maintain the consistency of the replicated state.

A consensus algorithm must satisfy three essential properties:

• Validity: The agreed-upon operation must be the input
of one of the replicas (e.g., a client operation).

• Agreement: The agreed-upon operation is the same
for all correct replicas.

• Termination: The replicas will eventually agree on
some operation.

Validity and agreement are safety properties: they define
events that must never happen in a correct execution. Ter-
mination, on the other hand, is a liveness property, defining
that a correct execution must make some progress [5].

2.2 Replicated Ledgers
We focus on a specific type of service: a ledger. Without loss

of generality, we assume that a ledger describes the movement
of money across different bank accounts. Concretely, a ledger
is an ever-growing sequence of transactions, each of which
transfers money between the users (i.e., clients) of the system.

Replicating a ledger is non-trivial, and even the relation be-
tween a ledger and consensus is not immediate. To understand
this relation, we start from the simple observation that a ledger
is no different than a fetch-and-add object [20]. As shown by
Herlihy [23], such an object has consensus number 2. This
means that, in a shared memory model, up to two processes
(but not more) can solve consensus among themselves if they
have access to fetch-and-add, i.e., a ledger object. Any object
weaker than a ledger, such as simple read-write register, is
insufficient to solve consensus in shared memory. In more prac-
tical terms, the problem of implementing a replicated ledger is
strictly more difficult than that of implementing a file system or
a key-value store, both of which have a read-write interface [7].

Note, however, that we are not interested in the shared mem-
ory model, but in the message passing model (detailed in §2.4).
Interestingly, in a message passing system, Delporte-Gallet et
al. [13] showed that replicating any object that has a consensus
number greater than one—such as fetch-and-add—is equivalent
to solving consensus. In other words, replicating a ledger is
equivalent to solving consensus. We also know that solving
consensus allows us to replicate any object via the SMR ap-
proach. Thus, we conclude that in the message passing model
there is no object that is harder to replicate than a ledger.

In the following, we explain how the abstract notions of
consensus and SMR relate to distributed ledgers.

25

2.3 Ledgers as Replicated State Machines
Modeling a ledger as a replicated state machine is straightfor-

ward. The SMR state is an ordered sequence of all transactions
performed in the past, while each new SMR operation repre-
sents the appending of a new transaction to the ledger.

The system replicas must agree (i.e., solve consensus) on
which transaction should take the n-th position in the ledger.
Validity is easy to satisfy in this context using standard cryp-
tography, so we do not focus on it henceforth. The challenge is
to achieve both agreement (safety) and termination (liveness).1

We require a replicated ledger to have the following properties:

1. Safety: If a replica accepts a transaction T ordered
after some transaction T ′, then no replica accepts T
without having ordered T ′ before T .

2. Liveness: If a client issues a transaction, the transaction
is eventually accepted at all correct replicas.

We note that accepting a transaction has a nuanced meaning.
In certain protocols, like PBFT, there is a specific point where
a transaction becomes irrevocable (this is often referred to
as consensus finality [33]). We say that such a transaction is
accepted. Protocols which lack consensus finality, like Bitcoin,
always permit the revocation of transactions—albeit with di-
minishing probability. When a revocation occurs, it represents
a safety violation; in this sense, Bitcoin is prone to violating
safety (§3.2.2).

Informally, safety prescribes that different replicas never
have a different view of what the n-th transaction is. To
understand the importance of safety, imagine, for example, two
replicas R0 and R1 participating in a protocol that replicates
a ledger. Both R0 and R1 have the same view of the first n−1
transactions; only one of these transactions states that a client
called Eve receives 100$. However, Eve manages to make
replica R0 believe that the n-th transaction is “Eve transfers
100$ to Alice”, while convincing R1 that the n-th transaction is
“Eve transfers 100$ to Bob”. Such a situation clearly violates
agreement. The balance in Eve’s account was 100$, so only one
of these transactions should be accepted by the system. If Alice
and Bob consult R0 and R1 respectively to obtain the state of
the ledger, they may both believe to have received money from
Eve and provide her with some goods or services in exchange.

Such situations, where Eve effectively spends the same
money twice, are known as double spending. Indeed, in the
context of ledgers, safety violations can always be related to
double spending. Different protocols have different approaches
to prevent this problem. We elaborate later how double spend-
ing can occur in notable blockchain protocols (§3.2 and §4).

We recall that replicating a ledger is equivalent to replicating
any state machine, as we argued earlier (§2.2). Traditionally,
protocols like PBFT are employed for general-purpose SMR.
Recently, however, protocols in the vein of Bitcoin are used
as well towards implementing SMR (e.g., Ethereum, which
generalizes transactions to so-called smart contracts [2]). For
simplicity, we restrict ourselves to distributed ledgers which
contain only monetary transactions; these are sufficient to ex-
plain all principles discussed in this paper, and a generalization
to arbitrary state machines is straightforward.

1Note that, in general, achieving only one of liveness and
safety is trivial. A protocol doing nothing never violates
safety, but violates liveness. On the other hand, it is easy
to make progress (satisfying liveness) if the output need not
be correct (violating safety).

2.4 The Adversary
We consider a message passing model where nodes commu-

nicate by exchanging messages. The adversary can control
various parts of the system, and there are two kinds of as-
sumptions on the capabilities of this adversary.

Behavior assumptions define how much control the ad-
versary can exert over the behavior of nodes (i.e., over the
correctness of their computation). These are typically known
as fault-threshold assumptions in distributed computing [26],
and a common example is that at least two thirds of replicas
are correct and follow the protocol faithfully [11], i.e., these
replicas are not corrupted by the adversary.

Synchrony assumptions define how much control the
adversary has over the speed of (otherwise corect) computation
at nodes, as well as over the message transmission delays and
delivery guarantees of the network. For example, the reliable
message delivery or the absence of network partitions both
fall under synchrony assumptions.

The precise definition of what the adversary can and can-
not do plays a great role. A truly Byzantine adversary has
no restrictions [25], but such a model is very restrictive in
terms of the solutions it allows. Perhaps the most common
assumption on a Byzantine adversary is that it cannot subvert
cryptographic primitives. For instance, standard cryptographic
assumptions prevent the adversary from inverting a secure
hash function or producing a valid cryptographic signature
without knowledge of the corresponding private key [11].

Another common assumption on the Byzantine adversary
limits its interference with the nodes which it does not directly
control. For example, it is often assumed that the adversary
cannot prevent correct nodes from making progress (e.g., com-
municating with each other) indefinitely through a denial of
service attack, a permanent network partition, or unremitting
dropped messages. Typically, the assumption is that messages
sent by correct nodes eventually reach their destination.

As we will see in the following sections, it is very often exactly
these fine details in what the adversary can and cannot do—and
for how long—that make the difference between the guarantees
various protocols offer. We will discuss different protocols also
from this point of view, i.e., we show how these assumptions
influence the protocols’ safety and liveness guarantees.

We ask ourselves the following question: What is necessary
to compromise the liveness and / or safety of a blockchain
protocol? Obviously, correctness of a protocol (i.e., upholding
both safety and liveness) always depends on every assumption a
protocol makes, otherwise the assumption would not be needed
in the first place. However, not necessarily both of safety and
liveness break when certain assumptions are violated. Focusing
primarily on safety, we discuss two classes of protocols:

• A-indulgent protocols: protocols indulgent to asyn-
chrony. These are protocols which focus on maintaining
safety while putting minimal restrictions on the adversary
in terms of synchrony.

• B-indulgent protocols: protocols which are indulgent
towards bad or malicious node behavior. These protocols
focus on maintaining safety while tolerating a relatively
large number of malicious nodes.

The famous FLP impossibility result [17] shows that solv-
ing consensus without restricting the adversary is impossible.
Protocols thus rely on various assumptions to circumvent this
impossibility and guarantee both safety and liveness. PBFT,
for example, can guarantee safety without any synchrony

26

assumptions on the adversary whatsoever. Synchrony assump-
tions are, however, required for liveness. Bitcoin, on the other
hand, remains correct even when allowing the adversary more
control over node behavior (an overwhelming fraction of nodes
can behave maliciously as long as they do not possess enough
computing power). Bitcoin, however, requires additional syn-
chrony assumptions to remain safe. In this sense, PBFT is
A-indulgent and Bitcoin is B-indulgent.

In the rest of this paper, we examine in more detail why
PBFT and Bitcoin are each a representative of one of these
classes. We then discuss other protocols, which, interestingly,
can lie in between the two classes (specifically, Algorand), or
are a combination of both classes (ByzCoin).

3. GENERAL SCHEME
In this section we introduce a general scheme that captures,

at a high level, the behavior of any protocol implementing
a blockchain. We also discuss how two notable blockchain
protocols can be expressed using our scheme, and show how
these protocols lie in sharp contrast to each other, representing
the A-indulgent and the B-indulgent class, respectively.

Implementing a blockchain that prohibits double-spending
is a challenging multi-level problem. First, most protocols rely
on a leader election mechanism. Leader election must ensure
that a unique leader presides over the protocol steps; this is
important for maintaining consistency, since two leaders can
engender disagreements. Generally, the existence of a leader
simplifies implementations and reasoning about distributed
protocols [28]. Blockchains operate in a Byzantine environment,
however, where some replicas—including the leader—may fail
arbitrarily. Even if a unique leader is correctly chosen, it
can act maliciously, e.g., by equivocating. A second problem,
then, is ensuring that transactions do not conflict and all
correct replicas maintain the same view on the blockchain data
structure. Yet a third problem can appear in protocols which
are optimistic and permit temporary conflicts to exist across
replicas; in such cases, additional measures are necessary to
resolve conflicts. We capture all these difficulties in a general
scheme that most algorithms follow in one way or another.

3.1 General Scheme
In broad strokes, we argue that the behavior of any protocol

implementing a blockchain comprises four basic steps. These
steps are as follows:

1 a client issues a transaction;

2 a leader election protocol determines a leader to marshal
the transaction;

3 the replicas commit on an ordering proposed by the
leader, i.e., they externalize the output, for instance, by
replying to the client or by executing the transaction on
their local state;

4 if the protocol allows conflicts to arise (which are often
called forks), then a recovery scheme triggers to reconcile
such conflicts.

The same replica may play different or multiple roles—be
it client, leader, or ordinary replica—in this four-piece scheme.
Indeed, in most protocols, each replica may become a leader at
some point. The most notable differences between blockchain
protocols arise at the level of steps 2 and 3 , namely in
the protocol’s method of dealing with the problems of leader
election and commitment on a proposal. These steps are

particularly difficult because it is at either of these two points
where disagreements among replicas may arise, which can lead
to safety violations (i.e., double-spending). In some protocols
(such as PBFT), leader election takes place a priori, and the
same leader tends to be reused across multiple transactions, as
long as that leader behaves correctly and is able to communi-
cate with a certain fraction of the system replicas [11]. In other
protocols (such as Bitcoin), leader election happens on the criti-
cal path of handling transactions. Often, step 4 is absent from
blockchain protocols. Unless we explicitly state what this step
entails, we consider it to be absent because the protocol avoids
disagreement by design, and hence no recovery is necessary.

3.2 Two Extremes of Blockchain Algorithms
We use our general scheme to present a breakdown, at a

very high level, of PBFT [11] and Bitcoin [27] protocols. Inter-
estingly, these protocols represent two extremes with respect
to leader election and commitment, which translates into each
of them belonging to one of the two indulgence classes, as we
show next.

3.2.1 PBFT – Practical Byzantine Fault Tolerance
In PBFT, clients send their transactions to some replica i

which they believe to be the current leader; if replica i is not
the leader, then i simply forwards the request to the actual
leader. This is step number 1 of our scheme.

In PBFT, the leader role switches from one replica to an-
other in a round-robin manner. Leader election—i.e., step
2 —takes place only if there is a suspicion that the current
leader has failed, prompting the system to switch to the next
leader by executing a view-change sub-protocol.2 If the leader
acts correctly and the network is synchronous so as to permit
progress, then no leader election occurs.

Step 3 in PBFT takes the form of a three-phase protocol.
This protocol is essentially a quorum-gathering technique with
Byzantine fault-tolerance, and ensures that if a correct replica
commits on the leader’s proposal, then no correct replica com-
mits on a different proposal. Any correct replica in the PBFT
protocol commits on some proposed ordering for a transaction
after that replica is certain that a majority of replicas also
commit on the same ordering.

A major drawback of PBFT-like protocols is that all replicas
must have complete and consistent knowledge of all other repli-
cas (i.e., the membership set) in the system at a given time.
This information can be statically setup at system deployment
and never changed, which is impractical for real-world repli-
cated ledgers, as participants are expected to change over time.
Dynamic membership can be achieved through a reconfigura-
tion module [4, 9]. For instance, the very same mechanism that
is used to agree on the contents of the ledger can also be used to
agree on the membership. In this case, membership is redefined
using a special transaction which changes the membership set.
When nodes commit on such a special transaction, they also
agree to update their view of the current membership set.

PBFT as an A-indulgent algorithm.
Informally, in PBFT any decision happens after the leader

2In PBFT, the leader is called the primary replica, and
each replica is a primary in a given view. The view-change
sub-protocol achieves the switching from a view to the next
(hence, it also switches the primary to a different one), which
we do not explain here. We refer the interested reader to the
original PBFT description for more details [11].

27

asks permission from a quorum; in this case, a quorum com-
prises more than 2/3 of the replicas [11, 26]. Hence, a superma-
jority of the system replicas must coordinate via a three-phase
protocol to agree on committing any decision. Irrespective of
how badly the network behaves—such as being asynchronous
or affected by a severe partition—PBFT always remains safe
as long as the 1/3 threshold of faulty replicas is maintained.
For this reason, we call PBFT an A-indulgent algorithm. In
the classic sense defined by Guerraoui [21], PBFT is indulgent
towards asynchrony in the network, permitting arbitrary pe-
riods of such asynchrony, because each correct replica refrains
from taking any decisive step before consulting with a majority
of replicas to agree on that step.

The only attack vector on PBFT’s safety is controlling a
fraction of at least a third of all replicas. In a dynamic setting,
as we described earlier, gaining control over a third of replicas
can be easy for an adversary. In a Sybil attack [14], the adver-
sary simply spawns many replicas and makes them all join the
system. As creating replicas is comparatively cheap in terms
of computational and communication resources, enacting such
an attack is realistic in practice. When controlling more than
a third of replicas, such an adversary can convince two correct
nodes to accept different transactions, t1 and t2, at the same
position in their ledger. These transactions can be crafted so as
to permit double-spending, i.e., both t1 and t2 can be spending
the same money, as in our example with Eve from §2.3.

To prevent the adversary from controlling a big fraction of
replicas, PBFT requires an additional protection mechanism.
This mechanism can take various forms, such as an access
control scheme based on a certificate authority, a mechanism
able to identify Sybil identities [6], or requiring participants to
dispose of important amounts of a scarse resource (similar in
spirit to Bitcoin’s proof-of-work, which we will discuss next).
To wrap-up, PBFT is mainly susceptible to an adversary that
can manipulate the behavior of a large number of replicas in
the system. As noted, however, PBFT is A-indulgent in the
sense that its safety is resilient towards asynchrony.

The next algorithm we visit is Bitcoin. This protocol lies
in sharp contrast with PBFT in its indulgence, i.e., in the way
it deals with asynchrony or with adversarial behavior.

3.2.2 Bitcoin
Nodes in Bitcoin-like protocols are called miners. At step

1 , clients issue their transactions to multiple miners, typically
through a gossip-based broadcast scheme. Each miner inde-
pendently assembles a block of transactions and then starts
executing a proof-of-work (PoW) algorithm.

The PoW algorithm serves, primarily, as a leader election
scheme, that is step 2 . In contrast to PBFT (where leaders
succeed each other whenever the views change), in Bitcoin all
miners are striving to become a leader for every new block
of transactions. Briefly, any miner can become the leader
if it successfully solves a cryptographic puzzle—essentially,
inverting a hash function [27]—faster than other miners.

Upon finding a puzzle solution, the miner becomes the de
facto leader, and it broadcasts its solution, proposing an order-
ing and commencing step 3 . The solution is uniquely bound
to the block which the miner assembled earlier, and chained to
the whole history of older blocks via a hashing algorithm, hence
giving the name of blockchain to the resulting data structure.

Step 3 is more nuanced in Bitcoin than in other systems.
Briefly, when another node observes a block, committing on it
simply means appending the corresponding block at the end of

its local blockchain. Note, however, that leader election does
not guarantee a unique leader, because multiple miners can
solve the puzzle for the same position in the blockchain. Since
all puzzle solutions are equally valid, this gives rise to a fork.
To select a specific branch of the fork and recover from the
conflict, nodes in Bitcoin simply wait until one of the branches
is extended with subsequent solutions. This is known as “the
longest chain wins” rule, and represents step 4 in our general
scheme. Typically, before committing some block b, nodes
wait until additional blocks—called confirmations—are found,
thereby extending b and raising the confidence that b will not
be abandoned. The number of confirmations can vary; a node
might even choose to wait for no confirmations and instantly
accept a block without any waiting time [1].

Bitcoin as a B-indulgent algorithm.
At a high level, PBFT and Bitcoin differ in one critical aspect.

Nodes in PBFT choose leaders and commit on values after con-
sulting with a majority of the system. Nodes in Bitcoin commit
on a value after some time passed and that value accumulated
a certain number of confirmations; the Bitcoin protocol, briefly,
relies on timing assumptions in the commitment step. For this
reason, Bitcoin does not qualify as an A-indulgent algorithm:
if timing assumptions do not hold (e.g., an adversary partitions
the system), then Bitcoin is vulnerable to attacks on its safety.
Instead, we label Bitcoin as a B-indulgent algorithm, since
this protocol tolerates adversarial behavior in the nodes, even
if the adversary controls the vast majority of the identities
(as long as their combined computation power stays small
enough). This difference between PBFT and Bitcoin reflects
mainly at steps 2 and 3 of these protocols.

Another important difference between Bitcoin and PBFT is
the notion of quorum. Unlike PBFT that relies on a quorum in
terms of the number of participating replicas, Bitcoin requires
the cooperation of replicas that together possess a majority
of the computing power in order to make decisions. While
this has severe impact on energy efficiency and performance
of the system, it serves as a protection against Sybil attacks,
towards which Bitcoin is not vulnerable.

Various attacks have been crafted against the Bitcoin pro-
tocol. Several attacks have to do with increasing the rewards
a miner can obtain in an unfair way, e.g., through selfish min-
ing [16], block withholding, or fork after withholding attacks.
Perhaps more important than fairness in rewards, we are inter-
ested in correctness attacks, that is, attacks that potentially
lead to double spending. An eclipse attack is interesting for
our discussion because it illustrates a concrete exploitation of
the optimistic nature of the Bitcoin protocol [22]. An attacker
with a sufficient number of IP addresses (in the order of thou-
sands) can pollute—i.e., eclipse—an honest node’s membership
view, so that the honest node only has connections with the
attacker and no other honest node in the Bitcoin network.
Essentially, the attacker partitions the honest node from the
rest of the network. Thereafter, the attacker creates a fork in
the blockchain: in one branch the attacker spends money on
certain goods, while in another branch the attacker is buying
something from the honest node. The former branch is part
of the actual Bitcoin network (and hidden from the eclipsed
node), while the latter branch is eventually orphaned. Note
that the attacker spent the same money on both branches.
To summarize, an eclipse attack is a way to exploit Bitcoin’s
timing assumptions towards carrying out a double spending
attack, i.e., violating Bitcont’s safety.

28

4. BLOCKCHAIN VARIATIONS
In this section, we position a few notable blockchain pro-

tocols (Algorand, ByzCoin and Bitcoin-NG) in relation to the
general scheme we introduced earlier (§3.1). For brevity, we
adopt a high-level view on each protocol and the focus will
be on their properties and assumptions (not on algorithmic
details) with respect to A-indulgence and B-indulgence.

4.1 Algorand
Algorand [19] is a recent blockchain protocol designed for

a permissionless environment, and exhibits very good per-
formance improvements over Bitcoin. In a nutshell, step 2
in this algorithm uses verifiable random functions to sample
nodes across the whole system and elect a small committee.
This committee is meant to act, as a whole, in the role of
the leader. Algorand does not assign voting power based on
identities (as PBFT does), nor based on computational power
(as done in Bitcoin), but instead associates a weight with each
node in the system based on the amount of money that node
possesses. This approach is known as proof-of-stake.

Step 3 in Algorand takes the form of a novel Byzantine
agreement algorithm, called BA⋆. At a high level, this is a two-
phase agreement protocol. Each phase comprises a series of
steps (typically between 2 and 11) leading either to agreement
among correct nodes or to a recovery subprotocol. Recovery
is triggered in case agreement is not reached (e.g., because of
a network partition) and a fork occurred. This subprotocol
represents step 4 , that is, reconciling conflicting views, and
highlights the importance of this step in our general scheme.

To ensure safety, Algorand assumes that the network expe-
riences bounded periods of asynchrony, and each such period
is followed by a bounded period of synchrony [19]. The exact
length of these periods is irrelevant; what matters to our
discussion is that safety in Algorand relies on the existence
of synchronous periods. A malicious adversary can therefore
exploit the assumption on the length of the synchronous period
towards subverting this system’s safety.

Algorand is an example of a protocol lying in between PBFT
and Bitcoin in terms of its indulgence. It is more A-indulgent
than Bitcoin: a violation of synchrony assumptions is not suffi-
cient to violate safety if all participants are honest (unlike in the
case of Bitcoin). Algorand is also more B-indulgent than PBFT,
in the sense that controlling the majority of nodes is not enough
to subvert the system (a substantial fraction of the money is
also necessary). To subvert Algorand’s safety, two conditions
must be met: (1) malicious nodes must control some part of
the money (not necessarily a big fraction), and (2) the network
must experience some asynchrony. Thus, Algorand is both less
A-indulgent than PBFT and less B-indulgent than Bitcoin.

4.2 Bitcoin-NG
Bitcoin-NG [15] is an important protocol because it intro-

duces the idea of decoupling leader election (step 2) from
agreement on blocks (step 3). In the original Bitcoin protocol,
as described in §3.2.2, these two steps are entangled: a single
leader is elected via PoW and nodes may immediately commit
on the leader’s proposal (if they choose to do so), or may
wait for some confirmations, but no additional mechanism is
necessary towards commitment.

Using this decoupling strategy, Bitcoin-NG can reach supe-
rior throughput compared to Bitcoin. Clearly, however, the
elected node has too much responsibility: on its own, this
leader can throw the system into a state of inconsistency by

introducing forks and allowing double-spending. Essentially,
this system has very similar assumptions and vulnerabilities as
Bitcoin, and thus we consider it a typical B-indulgent protocol.

4.3 ByzCoin
ByzCoin [24] is an instance of a hybrid blockchain proto-

col [30], as it combines PBFT-style with Bitcoin-style agree-
ment. Other such protocols exist [12, 30]; we focus here on
ByzCoin, but we believe that our conclusions equally apply
to other hybrid algorithms.

The common motivation underlying hybrid protocols is that
neither Bitcoin’s agreement (based on PoW), nor PBFT-style
agreement are perfect, but they are in a sense complementary
to each other. The former is very slow but has the advantage
of being resilient to Sybil attacks. The latter is faster, but
performs optimally if running on a small set of nodes (e.g., 4 to
7 replicas), and has no in-built protection against Sybil attacks.
Hybrid protocols combine these two styles of agreement in the
hope of avoiding their individual pitfalls and merging their
specific strengths.

Similarly to Bitcoin-NG, ByzCoin decouples leader election
(step 2) from agreement on transactions (step 3). However,
leader election in ByzCoin means electing a whole committee
of nodes (not just a single one). This committee runs PBFT,
which is used to quickly serialize new transactions.

To be part of a committee, a node must pass a simple
requirement: run PoW and be one of the last w nodes to find
a solution. The parameter w, called a “share window” [24],
defines the number of successful miners that will form the com-
mittee. This parameter encapsulates an important trade-off,
from the point of view of this protocol’s guarantees. On one
hand, smaller w means smaller committee and a bigger threat
to safety, as it is more likely that an adversary with sufficient
computational resources gains control of the committee—i.e.,
obtain a third of total shares in the PBFT committee—and
hence subvert the system’s safety, as we explained earlier
(§3.2.1). On the other hand, bigger w means larger commit-
tees: less potential for an adversary to control the committee,
but increased risk of losing liveness if a third of the nodes
in the committee are unresponsive, e.g., by being inactive at
certain times or just leaving the network.

From the point of view of indulgence, ByzCoin is a combi-
nation of an A- and B-indulgent algorithm. The PBFT-like
consensus algorithm ensures safety in periods of asynchrony,
while the Bitcoin-like leader election protects against malicious
node behavior such as Sybil attacks.

5. CONCLUSIONS
In this paper, we have presented a brief overview of several

notable blockchain protocols, relating them to well-established
concepts from distributed computing. We proposed a general
scheme which unifies classical (PBFT-like) state machine
replication protocols with the increasingly popular blockchain
protocols. Our main goal was to shed light on the differences
between these protocols. In doing so, we also pointed out the
existence of two classes of protocols, defined in terms of how an
adversary can go about subverting their safety. Asynchrony-
indulgent protocols maintain their safety despite the harshest
conditions of the network. A second class is that of malicious
behavior-indulgent protocols, which maintain safety while
tolerating big numbers of malicious nodes. We have shown how
some protocols in the blockchain ecosystem are representatives
of one class or another, or how they combine these two classes.

29

6. REFERENCES

[1] Confirmation
– Bitcoin wiki. https://en.bitcoin.it/wiki/Confirmation.

[2] Ethereum project. http://www.ethereum.org.
[3] I. Abraham, G. Gueta,

D. Malkhi, L. Alvisi, R. Kotla, and J.-P. Martin.
Revisiting fast practical byzantine fault tolerance. 2017.

[4] I. Abraham
and D. Malkhi. Bvp: Byzantine vertical paxos. 2016.

[5] B. Alpern and F. B. Schneider. Defining liveness.
Information processing letters, 21(4):181–185, 1985.

[6] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi,
and A. Panconesi. Communities, random walks, and
social sybil defense. Internet Mathematics, 10(3-4), 2014.

[7] H. Attiya, A. Bar-Noy, and
D. Dolev. Sharing memory robustly in message-passing
systems. Journal of the ACM (JACM), 42(1), 1995.

[8] C. Badertscher, U. Maurer,
D. Tschudi, and V. Zikas. Bitcoin as a transaction
ledger: A composable treatment. In Eurocrypt, 2017.

[9] A. Bessani, J. Sousa,
and E. E. Alchieri. State machine replication for
the masses with BFT-SMaRt. In IEEE/IFIP DSN, 2014.

[10] C. Cachin and M. Vukolić.
Blockchains consensus protocols in the wild (keynote
talk). In DISC, 2017. arXiv preprint arXiv:1707.01873.

[11] M. Castro and B. Liskov. Practical
byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems, 20(4), 2002.

[12] C. Decker, J. Seidel,
and R. Wattenhofer. Bitcoin meets strong consistency.
In Proceedings of the 17th International Conference on
Distributed Computing and Networking, page 13, 2016.

[13] C. Delporte-Gallet, H. Fauconnier,
and R. Guerraoui. Tight failure detection bounds
on atomic object implementations. JACM, 57(4), 2010.

[14] J. R.
Douceur. The sybil attack. In International Workshop
on Peer-to-Peer Systems, pages 251–260. Springer, 2002.

[15] I. Eyal, A. E.
Gencer, E. G. Sirer, and R. Van Renesse. Bitcoin-NG:
A Scalable Blockchain Protocol. In NSDI, 2016.

[16] I. Eyal and E. G. Sirer.
Majority is not enough: Bitcoin mining is vulnerable.
In International conference on financial cryptography
and data security, pages 436–454. Springer, 2014.

[17] M. J. Fischer, N. A.
Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. JACM, 32(2), 1985.

[18] J. Garay,
A. Kiayias, and N. Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Eurocrypt, 2017.

[19] Y. Gilad, R. Hemo, S. Micali, G. Vlachos,
and N. Zeldovich. Algorand: Scaling byzantine
agreements for cryptocurrencies. In SOSP, 2017.

[20] A. Gottlieb and C. P. Kruskal.
Coordinating Parallel Processors: A Partial Unification.
SIGARCH Comput. Archit. News, 9(6), 1981.

[21] R. Guerraoui. Indulgent
algorithms (preliminary version). In PODC, 2000.

[22] E. Heilman, A. Kendler, A. Zohar, and

S. Goldberg. Eclipse attacks on bitcoin’s peer-to-peer
network. In USENIX Security Symposium, 2015.

[23] M. Herlihy.
Wait-free synchronization. ACM TOPLAS, 13(1), 1991.

[24] E. K. Kogias, P. Jovanovic,
N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhancing
bitcoin security and performance with strong consistency
via collective signing. In USENIX Security, 2016.

[25] L. Lamport, R. Shostak, and M. Pease. The
byzantine generals problem. ACM TOPLAS, 4(3), 1982.

[26] D. Malkhi and M. Reiter. Byzantine
quorum systems. Distributed computing, 11(4), 1998.

[27] S. Nakamoto.
Bitcoin: A peer-to-peer electronic cash system. 2008.

[28] D. Ongaro. Consensus: Bridging theory
and practice. PhD thesis, Stanford University, 2014.

[29] R. Pass,
L. Seeman, and A. Shelat. Analysis of the blockchain
protocol in asynchronous networks. In Eurocrypt, 2017.

[30] R. Pass and E. Shi. Hybrid consensus: Efficient
consensus in the permissionless model. Cryptology ePrint
Archive, 2017. http://eprint.iacr.org/2016/917.pdf.

[31] M. C. Pease,
R. E. Shostak, and L. Lamport. Reaching agreement
in the presence of faults. J. ACM, 27(2):228–234, 1980.

[32] F. B. Schneider. Implementing
fault-tolerant services using the state machine approach:
A tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[33] M. Vukolić. The Quest for Scalable
Blockchain Fabric: Proof-of-work vs. BFT Replication.
In International Workshop on Open Problems
in Network Security, pages 112–125. Springer, 2015.

30

A Case Study for Grain Quality Assurance Tracking based
on a Blockchain Business Network

Percival Lucena
IBM Research

Alécio P. D. Binotto
IBM Research

Fernanda da Silva Momo
UFRGS

Henry Kim
York University

ABSTRACT

One of the key processes in Agriculture is quality measure-
ment throughout the transportation of grains along its com-
plex supply chain. This procedure is suitable for failures,
such as delays to final destinations, poor monitoring, and
frauds. To address the grain quality measurement challenge
through the transportation chain, novel technologies, such
as Distributed Ledger and Blockchain, can bring more effi-
ciency and resilience to the process. Particularly, Blockchain
is a new type of distributed database in which transactions
are securely appended using cryptography and hashed point-
ers. Those transactions can be generated and ruled by spe-
cial network-embedded software – known as smart contracts
– that may be public to all nodes of the network or may be
private to a specific set of peer nodes. This paper analy-
ses the implementation of Blockchain technology targeting
grain quality assurance tracking in a real scenario. Prelim-
inary results support a potential demand for a Blockchain-
based certification that would lead to an added valuation of
around 15% for GM-free soy in the scope of a Grain Exporter
Business Network in Brazil.

1. INTRODUCTION
According to a WorldBank Report [1], in 2015 Brazil ex-

ported 195 billion dollars, making it the 21st largest exporter
in the world. Exports are led by soybeans which represent
11% of the total exports of Brazil. Other grains such as cof-
fee 3% and corn 2.6% also represent a significant percentage
of Brazilian exports.

The United States Department of Agriculture annual pro-
duction, supply and distribution report states that Brazil is
the second largest soybean producer in the world, behind
only the United States[2]. The sum of exports from January
to August 2017 is over 57 million tonnes [3]. In comparison
with 2016, in this same period, there was an increase of more
than 8.7 million tons exported.

The Brazilian cereal grains production for the 2016/17
harvest increased by 28% reaching 238.8 million tons as

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and FAB 2018.
Symposium on Foundations and Applications of Blockchain (FAB ‘18)
March 9, 2018, Los Angeles, California, USA.

reported by the 12th Grain Survey conducted by Conab
(Brazilian National Supply Company) [3]. A FIESP survey
(Federation of Industries of the State of São Paulo) shows
that the planted area dedicated to grains in Brazil is esti-
mated at 60.9 million hectares which represents the largest
area registered in the historical series [4].

The increasing productivity of grains in Brazil is related
to a greater use of technology in the field, present not only
in machines and implements but also in seeds, cultivation
techniques and also the use of irrigation. Regarding the
production of maize, soybean, and wheat, there is a variation
of productivity in relation to the 15/16 harvest, respectively,
32.9%, 17.2% and -14.8% [3].

Forasmuch as technology has helped Brazilian cereals
grain production, agriculturalists still face logistics and
warehouse challenges to move the production from the farm
to port terminals and processing industries. More than sixty
percent of the Brazilian soybean production is transported
by truck from the production areas to the port terminals [5].

The existing transportation and warehouse storage pro-
cesses often affect grain quality causing grain damage, mois-
ture, and contamination [6]. Grain quality control informa-
tion is often kept in spreadsheets and spread among diverse
ledgers which often provides inaccurate information caus-
ing financial losses on negotiation between producers and
traders.

This case study aims to describe and highlight the gains
obtained with the implementation of a Blockchain Busi-
ness Network for Brazilian Agriculture exports; the lessons
learned from the implementation of this project; the chal-
lenges in the development of Blockchain platform and future
opportunities of using Blockchain in other contexts.

This paper presents the GEBN Blockchain Business
Network, an enterprise consortium that aggregates data
from certified quality assurance processes and provides
information for diverse business partners of The Brazilian
Grain Exporters Business Network. This platform helps
producers track grains stored in warehouses optimizing
trading with global exporters. The remainder of this paper
will explain the solution implemented and it is structured as
follows: Section 2 introduces Blockchain Business Networks.
Section 3 describes the Brazilian Grain Exporters Business
Network. Section 4 presents the case study context. Section
5 presents a Proof of Concept developed, and Section 6
presents results and conclusions.

31

2. BLOCKCHAIN TECHNOLOGY APPLI-
CATIONS ON AGRICULTURE

Blockchain can be seen as a “disruptive innovation with a
wide range of applications, potentially capable of redesign-
ing our interactions in business, politics, and society in gen-
eral” [7] . Focusing on the business field, Cohen, Amorós,
and Lundy (2017) [8] point out that the use of Blockchain in
solving different business problems, from different segments,
allows for modifications in existing business models and even
the creation of new business models. Therefore, this tech-
nology allows new opportunities for creating customer value
in a business model suitable for its exploration [8].

Blockchain has originated as a shared database for record-
ing the history of Bitcoin transactions [9]. These transac-
tions are grouped in blocks, including hashed pointers to
previous blocks, that provide the accepted history of trans-
actions since the inception of the Blockchain. This architec-
ture has been implemented and extended by several general
purpose ledgers such as Hyperledger Fabric [10], R3 Corda
[11] and Ethereum [12].

The Blockchain can be regarded as a complex, network-
based software connector, which provides communication,
coordination (through transactions, smart contracts, and
validation oracles) and facilitation services. Every node in
the blockchain network has two layers, namely, application
layer and blockchain layer. Part of the application is imple-
mented inside the blockchain connector in terms of smart
contracts [13].

Szabo [14] has coined the “smart contract” term as soft-
ware representation for many kinds of contractual clauses
in a way to make a breach of contract expensive for the
breacher. Smart contracts could be used to represent liens,
bonding, delineation of property rights, and other paper-
based contracts. Smart contracts may be operated by a
consortium comprising of parties in a multilateral contract
[15].

2.1 Blockchain Business Networks
Advanced globalization has created several complex sup-

ply chain scenarios where different companies cooperate to
form a “quasi-organization” [16]. A Business Network de-
scribes the structures and processes that exist in the ex-
change of assets among participants in economic networks.

In the business network, every company “connects differ-
ent people, various activities and miscellaneous resources
with varying degrees of mutual fit” and “operates within
a texture of interdependencies that affects its development”
[17]. Technology, knowledge, social relations, administrative
routines, and systems are some resources that are encoun-
tered in business relationships.

Therefore, participants, assets, registries, and transac-
tions are shown as fundamental elements of a business net-
work. Participants are the actors in the business network
and might be an individual or an organization. Assets
are created by participants and subsequently exchanged be-
tween them through transactions. Assets can have a rich
lifecycle, as defined by the transaction in which they are in-
volved. As assets move through their lifecycle and through
different registries they can be in more than one registry at
the same time.

Complex business networks can be represented in different
ways. Previous to the advent of Blockchchain, most multi-

Figure 1: External business collaborations imple-
mented on Blockchain.

party business collaborations were implemented in the form
of multiple binary relationships. Alternatively, the business
partners would rely on a Trusted Third Party (TTP) to fa-
cilitate interactions, since a TTP acts for building and repair
the trust [18]. Another possibility is the use of technology
as a way to reduce TTP’s participation in the business net-
work maintaining trusting. Blockchain can represent com-
plex business networks by nodes for each one of the different
companies that need to cooperate and exchange information.

Contracts are usually created as a set of promises to for-
malize relationships in a Business Network. Whenever a
trusted intermediary is removed, the organizations involved
in interdependent processes must find alternative means to
provide a division of labor as effectively as the displaced con-
tractor. Smart contracts can provide such division of labor
and near decomposability [15].

Blockchain provides a new approach to Business Net-
works. According to several authors [19, 20, 21, 22], this
technology has a great potential of impact and revolution
in the world economy from the generation of changes in
organizations and in the way business is done. Most of
the blockchain networks assume organizations running the
peers have no trust relationship established between them.
Encryption, consensus, and other algorithms of blockchain
guarantee trusted outcomes in this context [23].

In this regard, Figure 1 presents the relationship config-
urations mentioned before between the parties involved in
a transaction of a complex business network. We highlight
from these configurations that the use of Blockchain allows
a better flow between the members of the business network
and remove the role of some intermediaries in some business
processes [9].

32

3. THE BRAZILIAN GRAIN EXPORTERS
BUSINESS NETWORK (GEBN)

The Grain Exporters Business Network (GEBN) in Brazil
is composed of a diverse set of players including grain
producers, rural credit cooperatives, warehouse companies,
tradings exporters, agrochemical companies, freight for-
warders, and ports authorities. There are different types
of transactions and contracts among business partners for
financing, sales, transportation, warehousing, among others.

Figure 2: Grain Exporters Business Network

Figure 2 illustrates part of the Grain Exporters Business
Network consortium. Actor 1 represents a grain producer
who is usually concerned that the grains ingest and classifi-
cation are properly conduced, so he can be fairly paid. The
ingest receipt is also important for the Producer in order
to obtain credit on Rural Credit Banks and to contract pro-
duction insurance as well. Actor 2 represents a Rural Credit
Bank agent who depends on accurate data from producers to
reduce credit giving risks and offer lower interest credit rates
for credit operations. Actor 3 represents a private ware-
house agent who depends on accurate grain classification
data in order to wholesale grains. Actor 4 represents a trad-
ing company agent who is concerned in buying large amount
of grains with the right quality from several warehouses in
order to fulfill an export request. Actor 5 represents a food
processing company who is concerned in buying special se-
lected grains that have specific characteristics such as high
protein, high carbohydrates and low moisture levels.

The different players from the grain supply chain were
not able to trust a centralized system due to the different
business goals of the business actors. The Brazilian Govern-
ment National Supply Company (CONAB) GeoSafras Re-
port [24] offers yearly total estimates of grains production.
Unfortunately, real time information about grain products
is segregated to local actors in the supply chain.

Blockchain smart contracts provides a fair trading system
of exchange that honours producers, communities, whole-
salers, traders and the environment. Blockchain immutable
ledger provides a compliance mechanism in order to avoid
frauds in the grain classification process. As described in
Figure 2, GEBN platform was created so that laboratory
quality assurance test devices can connect directly to the
Blockchain so the process information cannot be changed.
This provides extra trust for the GEBN business partners
who depend on accurate grain information. Blockchain can
increase its likelihood of export to international markets
since compliance with international standards becomes a

transparent and undisputed matter [25].
The designed solution plans to be extended to cover

most common agriculture processes allowing Agribusiness
partners to collaborate seamlessly, reducing communication
time, helping to track product provenance, reducing costs,
and proving trust among GEBN partners.

4. CASE STUDY CONTEXT
The grain mass stored in the silos deteriorates in rela-

tion to the interaction between physical variables (temper-
ature, humidity, warehouse structure, meteorological vari-
ables), chemical variables (oxygen availability in intergranu-
lar air) and biological variables of internal sources (longevity,
respiration, post-harvest maturity and germination) and bi-
ological variables from external sources (fungi, yeasts, bac-
teria, insects, mites, rodents and birds). The degree of dete-
rioration depends on the rate of increase of these variables
which, in turn, are mainly affected by the interaction of tem-
perature and humidity and secondarily by their interrelation
with the grain, between them, and with the structure of the
silo [26].

The search for the quality of grains and by-products is
a priority for producers, processors, and for distributors of
these products. Quality assurance processes are used on
GEBN to provide grain classification according to interna-
tional standards. Due to deterioration factors, it is impor-
tant to have accurate information of the grains when they
arrive and leave the warehouse silos. The intrinsic and ex-
trinsic analysis processes are executed on both incoming and
outgoing trucks, so grains quality assurance compliance pro-
cess provides decision information for both grains buyers and
sellers.

In a standard quality assurance process, an automatic
crane located in the warehouse entrance, removes samples
from a grain loaded truck. Those samples are sent by pipes
to a packer in the laboratory. A laboratory technician col-
lects the samples and submits them to intrinsic and extrinsic
analysis tests.

4.1 Intrinsic Analysis
This process analyses soybeans and corn samples in order

to detect if the grains are genetically modified (GMO) and
if mycotoxins levels are at acceptable levels. Sample grains
are ground so that 60-70% of the sample must pass through
a 20-mesh sieve. Grains are then mixed with water in a (1:5)
proportion. A 12 ml sample is removed from the solution
using a pipette and dispensed into a reaction cup where a
reaction strip is placed for 5 minutes. Inside the reaction
tube, the sample travels by capillary action of an end to
the other extreme of the tape. When passing through the
membrane, the sample comes in contact with the antibodies
that react with the target analyte [27].

After the testing period, the strip is then immediately
placed into Envirologix QuickScanner device which is con-
nected to a computer that reads the information and stores
it on GEBN Blockchain. Each batch of test strips for GMOs
or mycotoxins is tested and compared to known quantifica-
tion patterns generating specific batch curves. The standard
curve data is encoded in a 2-D strip itself. When the strip
is read, Envirologix QuickScanner software measures the in-
formation of the standard curve present in the barcode and
calculates the amount of analyte specific to each test tape.

33

4.2 Extrinsic Analysis
Brooker et al. [28] considers several properties for extrin-

sic analysis of grains, such as: moisture content, specific
mass, the percentage of broken grains, impurities, damages
caused by drying temperature, susceptibility to breakage,
grinding, the presence of insects and fungi, type of grain
and year of production. GEBN Blockchain extrinsic anal-
ysis process determines some of those grains characteristics
such as moisture levels, broken and damage levels.

Gehaka Moisture Analyzers installed in the Quality assur-
ance laboratory provide information directly to the GEBN
Blockchain. The quality process that requires visual anal-
ysis is stored including information of the testing operator
and exam date in order to avoid disputes.

5. EXPERIMENT
On our GEBN study, each business partner owns a node

in the network with a full copy of transaction data shared
among all the participants. Three nodes were created on
GEBN: one for the cooperative producers, another for the
warehouse originator company and a third for a rural credit
bank.

GEBN was deployed on a Hyperledger Fabric Blockchain
Cloud instance. Figure 3 illustrates quality assurance trans-
actions stored on GEBN Blockchain. Hyperledger 1.0 query
mechanisms are used to trace the origin of an outgoing lot
helping audit processes through the supply chain. Hyper-
leger Fabric 1.0 blockchain also provides private communi-
cation channels, allowing computation to occur only among
business partner nodes involved in a transaction. Permis-
sioned blockchains such as Hyperledger Fabric have a set
of trusted parties to carry out verification, and additional
verifiers can be added to the agreement of the current mem-
bers of the consortium. [29]. Permissioned blockchains offer
clear advantages in security and privacy while potentially
reducing costs of compliance with regulations [30].

Figure 3: Quality Assurance Transaction on GEBN
Blockchain.

Smart contracts were created using the Hyperledger Com-
poser Framework [31] as described on Figure 4. Hyperledger
Composer Framework includes a standalone Node.js pro-
cess that exposes a business network as a LoopBack REST
API [32]. The communication between the Grain Controller
Desktop Application (GDPA) and the GEBN Blockchain
server is protected by PassportJS open source authentica-
tion middleware [33] configured with passport-local strategy
that implements an access control list.

Figure 4: High Level Architecture

The Grain Controller Desktop Application was installed
at a single Warehouse Quality Control lab in Ribeirão do Sul,
Brazil. All the grains received at this facility pass through
the quality control procedure before they are stored in si-
los. The quality control process allows the segregation of
grains by levels of quality so prices are set according to the
characteristics of the stored and marketed cargo. Listing
1 shows a sample smart contract developed for calculating
price discounts for soybeans.

Figure 5: Grain Controller Desktop Application

34

The quality control procedure starts when the trucks ar-
rive at the warehouse facility. The cargo electronic weight-
ing information is stored on GEBN Blockchain. Afterwards,
samples are taken from all incoming and outgoing trucks.
Those samples are submitted to extrinsic and intrinsic anal-
ysis processes.

A certified quality assurance user authenticates in GDPA
and inputs information about the producer’s cargo that ar-
rives at the facility as described on Figure 4. GDPA reads
quality data directly from Intrincic and Extrinsic analy-
sis devices. Producer’s identity is also stored on GEBN
Blockchain. The analysis results determine the pre-cleaning
and drying process for the cargo and the appropriate stor-
age silo. When a grain cargo is sold, a similar process is
executed on the outgoing truck.

Listing 1: DiscountsTransaction

01 . a s s e t Ex t r i n s i c Ana l y s i s i d e n t i f i e d by Invoice Number {
02 . o St r ing Invoice Number
03 . −−> Operator operator
04 . o DateTime date
05 . o St r ing Sample Number
06 . o Double Mois ture Percent
07 . o Double Impur i ty Percent
08 . o Double Broken Percent
09 . o Double Green i sh Percent
10 . o Double Damaged Percent
11 . o Double Total Discounts KG
12 . }
13 .
14 . t r an sac t i on DiscountsTransact ion {
15 . −−> Ex t r i n s i c Ana l y s i s a s s e t
16 . }
17 .
18 . event DiscountsEvent {
19 . −−> Ex t r i n s i c Ana l y s i s a s s e t
20 . }
21 .
22 . func t i on d i scountsTransact ion (tx) {
23 . var d=0;
24 . i f (tx . a s s e t . Moisture Percent >12)
25 . d+=(tx . a s s e t . Moisture Percent −12)∗4;
26 . i f (tx . a s s e t . Impurity Percent >3)
27 . d+=(tx . a s s e t . Impurity Percent −3)∗2.5;
28 . i f (tx . a s s e t . Broken Percent >5)
29 . d+=(tx . a s s e t . Moisture Percent −5)∗1;
30 . i f (tx . a s s e t . Damaged Percent>3)
31 . d+=(tx . a s s e t . Impurity Percent −3)∗3.5;
32 . tx . a s s e t . Total Discounts KG = d ;
33 .
34 . return
35 . ge tAsse tReg i s t ry (’ com . ag r i t e ch . Ex t r i n s i c Ana l y s i s ’)
36 . . then (funct i on (a s s e tReg i s t r y) {
37 . return a s s e tReg i s t r y . update (tx . a s s e t) ;
38 . })
39 . . then (funct i on () {
40 . var event =getFactory ()
41 . . newEvent (’ com . agr i t ech ’ , ’ DiscountsEvent ’) ;
42 . event . a s s e t = tx . a s s e t ;
43 . tx . a s s e t . Total Discounts KG ;
44 . emit (event) ;
45 . }) ;
46 . }

6. CONCLUSIONS
This study aims to describe and highlight the gains ob-

tained with the implementation of the blockchain platform
in the agricultural context; the lessons learnt from the im-
plementation of blockchain in the agricultural context; the
challenges in the development of blockchain platform and
future opportunities of using blockchain in other contexts.

One of the main advantages of using Blockchain, in spite
of other software development platforms, is that all the
members of the GEBN can now share the same business
rules and transaction data in their nodes reducing disputes
among business partners, information asymmetries and con-
sequently improving governance.

The transactions transparency provided by Blockchain re-
quires that the companies involved in the supply chain to
collaborate effectively defining common rules that can be
expressed in smart contracts. The formation of consortia

like GEBN is an interesting form of organization that al-
lows members of a supply chain to vote on the rules and
consensus principles for transactions settlements.

We found a controversial use of Blockchain regarding its
legal value. In order to prevent disputes, our approach fo-
cused on signing all transactions with an identity of a recog-
nized member of the consortia. Brazilian legislation imple-
mented by Medida Provisoria 2.200-2/2001 recognizes digi-
tal signatures on documents to have legal value. Nonethe-
less, complex scenarios involving international trade and ar-
bitration laws are yet to be proven.

Although our blockchain application focused on grains
quality control we believe there is a huge opportunity for
Blockchain applications on Global Trade. Trading partners
today rely on a complex and paper-heavy process to secure
their transactions. Buyers, sellers, banks, transporters, in-
spectors, regulators have their own forms and records to
fill out in separate systems of records. Capital is tied up
as paper documents are sent back and forth, checked and
rechecked, reviewed and reconciled. Delays caused by errors
and manual processing can make it difficult for companies
to access financing, which could cause business inefficien-
cies. Blockchain can provide a shared version of the truth,
so trade partners can interact with greater trust. Third-
party verification processes could be simplified by the use of
smart contracts reducing the potential for errors or tamper-
ing. This can increase the efficiency with which companies
access funding as well as save time and costs throughout the
trade process.

Like all prior disruptive technologies, there will be benefi-
cial and detrimental aspects of Blockchain technologies that
will be tested as the first Blockchain Business networks start
to operate. As the technology matures, Blockchain Business
networks should provide several new business models that
can revolutionize several industries worldwide.

7. REFERENCES

[1] World
Bank. Brazil vegetable exports by country 2015 - online:
http://wits.worldbank.org/countryprofile/en/country/bra,
2016.

[2] United States Department of Agriculture (USDA).
Top 10 countries for oilseed, soybean.
-http://bit.ly/2bjnoyq, September 2017.

[3] Companhia Nacional de Abastecimento (CONAB).
Acompanhamento da safra brasileira de grãos,
September 2017.

[4] Federação das Indústrias do Estado de São
Paulo (FIESP). Informativo deagro, September 2017.

[5] Mary-Grace C Danao, Rodrigo S Zandonadi, and
Richard S Gates. Development of a grain monitoring
probe to measure temperature, relative humidity,
carbon dioxide levels and logistical information during
handling and transportation of soybeans. Computers
and Electronics in Agriculture, 119:74–82, 2015.

[6] José Vicente Caixeta Filho. The determinants of
transport costs in brazil’s agribusiness. Technical
report, Inter-American Development Bank, 2008.

[7] Marcella Atzori. Blockchain technology and
decentralized governance: Is the state still necessary?
2015.

[8] Boyd Cohen, José Ernesto Amorós, and Lawrence

35

Lundy. The generative potential of emerging
technology to support startups and new ecosystems,
2017.

[9] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008.

[10] Elli Androulaki, Artem Barger, Vita Bortnikov,
Christian Cachin, Konstantinos Christidis, Angelo
De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, et al. Hyperledger
fabric: A distributed operating system for
permissioned blockchains. arXiv preprint
arXiv:1801.10228, 2018.

[11] R Brown. Introducing r3 cordaTM: A distributed
ledger designed for financial services. R3 Cev, 2016.

[12] Gavin Wood. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum Project
Yellow Paper, 151, 2014.

[13] Xiwei Xu, Cesare Pautasso, Liming Zhu, Vincent
Gramoli, Alexander Ponomarev, An Binh Tran, and
Shiping Chen. The blockchain as a software connector.
In Proceedings of the 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA), 2016.

[14] Nick Szabo. Formalizing and securing relationships on
public networks. First Monday, 2(9), 1997.

[15] Henry M Kim and Marek Laskowski. A perspective on
blockchain smart contracts: Reducing uncertainty and
complexity in value exchange. 2017.

[16] H̊akan H̊akansson and David Ford. How should
companies interact in business networks? Journal of
Business Research, 55(2):133 – 139, 2002. Marketing
Theory in the Next Millennium.

[17] Ivan Snehota and Hakan Hakansson. Developing
relationships in business networks. Routledge London,
1995.

[18] Susan E Brodt and Lukas Neville. Repairing trust to
preserve balance: A balance-theoretic approach to
trust breach and repair in groups. Negotiation and
Conflict Management Research, 6(1):49–65, 2013.

[19] Ray Valdes and David Furlonger. Prepare for a
multiple blockchain world, 2016.

[20] Don Tapscott, Alex Tapscott, and Rik Kirkland. How
blockchains could change the world, 2016.

[21] Joe McKendrick. Why blockchain may be your next
supply chain, 2017.

[22] Don Tapscott and Alex Tapscott. How Blockchain
Will Change Organizations. Winter, 2017.

[23] Richard Hull, Vishal S. Batra, Yi-Min Chen, Alin
Deutsch, Fenno F. Terry Heath III, and Victor Vianu.
Towards a Shared Ledger Business Collaboration
Language Based on Data-Aware Processes, pages
18–36. Springer International Publishing, Cham, 2016.

[24] Divino Cristino Figueiredo. Projeto geosafras sistema
de previsão de safras da conab. Revista de Poĺıtica
Agŕıcola, 14(2):110–120, 2005.

[25] Yu-Pin Lin, Joy R Petway, Johnathen Anthony,
Hussnain Mukhtar, Shih-Wei Liao, Cheng-Fu Chou,
and Yi-Fong Ho. Blockchain: The evolutionary next
step for ict e-agriculture. Environments, 4(3):50, 2017.

[26] Ranendra N Sinha and William E Muir. Grain
storage: part of a system. Avi Pub. Co., 1973.

[27] Envirologix. Quickscan user manual. online:

http://www.envirologix.com/wp-
content/uploads/2015/05/M120.pdf,
2017.

[28] Donald B Brooker, Fred W Bakker-Arkema, and
Carl W Hall. Drying and storage of grains and
oilseeds. Springer Science & Business Media, 1992.

[29] Gareth W Peters and Efstathios Panayi.
Understanding modern banking ledgers through
blockchain technologies: Future of transaction
processing and smart contracts on the internet of
money. In Banking Beyond Banks and Money, pages
239–278. Springer, 2016.

[30] David Yermack. Corporate governance and
blockchains. JReview of Finance, 21(1):7 – 31, 2017.

[31] Ashray Kakadiya. Block-chain oriented software
testing approach. 2017.

[32] Azat Mardan. Sails. js, derbyjs, loopback, and other
frameworks. In Pro Express. js, pages 205–214.
Springer, 2014.

[33] Caio Ribeiro Pereira. Authenticating users. In Building
APIs with Node. js, pages 49–59. Springer, 2016.

36

Towards Trusted Social Networks with Blockchain
Technology

Yize Chen
University of Washington

Seattle, WA, USA
yizechen@uw.edu

Quanlai Li
University of California,

Berkeley
Berkeley, CA, USA

quanlai_li@berkeley.edu

Hao Wang
University of Washington

Seattle, WA, USA
hwang16@uw.edu

ABSTRACT

Large-scale rumor spreading could pose severe social and economic
damages. The emergence of online social networks along with the
new media can even make rumor spreading more severe. Effec-
tive control of rumor spreading is of theoretical and practical sig-
nificance. This paper takes the first step to understand how the
blockchain technology can help limit the spread of rumors. Specif-
ically, we develop a new paradigm for social networks embedded
with the blockchain technology, which employs decentralized con-
tracts to motivate trust networks as well as secure information ex-
change contract. We design a blockchain-based sequential algo-
rithm which utilizes virtual information credits for each peer-to-
peer information exchange. We validate the effectiveness of the
blockchain-enabled social network on limiting the rumor spread-
ing. Simulation results validate our algorithm design in avoiding
rapid and intense rumor spreading, and motivate better mechanism
design for trusted social networks.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Data min-
ing; J.4 [Social and Behavioral Sciences]: Computer Applica-
tions—Social Networks

Keywords

Blockchain, Rumor Spreading, Social Networks, SIR, SBIR

1. INTRODUCTION
Rumor has been existing for thousands of years in human his-

tory. A rumor often refers to a piece of unverified information (e.g.,
explanation of events, media coverage, and information exchange)
circulating from person to person or pertaining to an object, event,
or issue of public concern [1]. In the age of the Internet, denser
connections among individuals along with faster information trans-
mission rate also trigger rapid rumor propagation, and could cause
more intense social panics and negative effects [2].

Past studies have put emphasis on both the modeling techniques
and the avoidance mechanisms of rumor spreading. Yet consider-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and FAB 2018.
Symposium on Foundations and Applications of Blockchain (FAB ‘18)
March 9, 2018, Los Angeles, California, USA.

ing the complexities of rumor transmission dynamics, the diversity
of social networks, along with the emergence of information trans-
mission media, most of these studies cannot find the root of rumor
blast nor a general yet effective approach to eliminate rumor dis-
semination [3].

The blockchain technology then becomes a good fit, which has
seen its success in financial area for trusted and secure contracts.
This has motivated us to re-design the information exchange pro-
cess as a “contract"-based process in modern social networks. In
addition, the pair-wise spreading style of rumor also lets blockchain-
based contract to become a good fit for future information propa-
gation and exchange platform.

In this work, we introduce a mechanism for smart contract design
that makes full use of the expressive power fulfilled by blockchain
technologies. By allocating a virtual accumulated credit for each
member in the social network, we design an innovative approach
for information exchange. Such credits are a reflection of the cred-
ibility of both social network members and corresponding infor-
mation. The proposed algorithm is designed to avoid the spreading
of “untrusted information", which is information without sufficient
endorsement.

To illustrate that such a mechanism design would help to avoid
the large-scale propagation of fake news through the network, we
design and set up a graphical model along with the nonlinear sys-
tems for the social networks that are of interests. We show that
for peer-to-peer information exchange and propagation, individu-
als under blockchain are more cautious about the authenticity of the
information. Our simulation examined the propagation of informa-
tion with and without the proposed mechanism, and showed that
our proposed approach can effectively reduce the social and eco-
nomic damage by rumor. To our knowledge, this paper is the first
work aiming to utilize the characteristics of blockchain to address
and solve the rumor spreading problems in social networks. The
general architecture for our proposed approach is shown in Fig. 1.

1.1 Related Work

1.1.1 Rumor Spreading Model
A rumor is a piece of unverified circulating information. Past

research on rumor involved multidisciplinary efforts from physics,
sociology, and psychology. Several approaches to the modeling of
rumor spreading and control of its damage were discussed [4, 5].
Previous rumor models regarded the heterogeneous social network
as a graph where rumors propagate. Studies in [6] used stochastic
processes to simulate rumor spreading to get a better understand-
ing. In [7], the authors observed that more influential spreaders ex-
ist on social networks. They assigned higher probabilities for them
to spread the information. In the context of new types of social
media and networks (e.g., micro-blogging), studies in [8] proposed

37

Photo Sharing News Aggregator Online Forum Social Network

Trusted Information Decentralized
Operation Faster Derumorization

Traceable
Propagation

Information
Origin Layer

Data Layer

Contract Layer

Operation
Layer

Digital
Integrity Rumor Detection Information Tracing Peer-to-Peer

Exchange

Photo News Posts Video

Figure 1: The architecture of blockchain-enabled information ex-

change system.

a SIR (Susceptible, Infected, Recovered) rumor spreading model.
In this model, the spreading process is classified as susceptible,
infected, and recovered. The work is based on the assumption that
ignorants are easily influenced by the spreader, and that accordance
with reality will change the probabilities of converting a spreader
into a stifler.

Previous studies have shown that the cessation or blast of ru-
mors is mainly related to the stifling and forgetting mechanisms
for a given network [9, 10]. New forms of social networks, such
as bidirectional information exchanges, also emerge. In this case,
the receiver could also have an influence on the spreader. We will
leverage the blockchain technology in this type of social network,
and examine how this will affect the spread of rumors (e.g., change
of immunity).

1.1.2 Blockchain Technology
A blockchain is a linked chain of growing list of blocks [11]. Ev-

ery block contains its corresponding record and the timestamp. The
blockchain is designed with a peer-to-peer network, where each
node propagates its records to other nodes. This design prevents
unvalidated modification of data.

Researchers have implemented blockchain-based protocols to build
a decentralized network [13]. In the network, the third party is
replaced by an automated access-control manager, enabled by the
distributed blockchain system. Other researchers proposed to adopt
blockchain in supply chain management for a better quality [14].
Blockchain can solve the traceability and trustability problems in
this scenario. People also find blockchain useful in power grid in-
dustry [15]. Both utilities and consumers benefit from this technol-
ogy by recording and validating the information on a distributed
network affordably and reliably. Meanwhile, a combination of
blockchain and the internet of things (IoT) increases utilization of
cloud storage [16]. The blockchain is also suitable for other appli-
cations, such as online transaction, identity management, notariza-
tion [13].

The main contributions of this paper are as follows:

• We propose an innovative decentralized mechanism for so-
cial network information exchange based on blockchain;

• We build a blockchain-enabled SIR model and show from
numerical simulations that from the “regulator" perspective
proposed algorithm could effectively control rumor spread-
ing on social networks.

The remainder of the paper is organized as follows. In Section 2,
we present the rumor spreading model for social networks. In Sec-
tion 3, we develop the blockchain-enabled architecture for social
networks. In Section 4, we conduct numerical simulations to val-
idate the effectiveness of our blockchain-enabled algorithm, and
Section 5 concludes the paper.

2. RUMOR SPREADING MODEL
In this section, we present the SIR epidemiological model, which

can be used to characterize the rumor spreading dynamics for a
social network with a group of fixed participants. We analyze the
temporal characteristics of such a stochastic model (e.g., the peak
value, the convergence rate and the final state), and introduce the
potential roles that the blockchain technology could play to reduce
the spread of rumors. We also discuss several practical issues in
real-world social networks.

2.1 Model Setup
Consider an undirected graph G = (V,E), where V is a set of

vertices representing individuals in the social network, and E is a
set of edges representing the social interactions. We assume that
the social network has a fixed number of homogeneously mixed
population, and the degree distribution for nodes in G conforms to
the Poisson distribution:

P(k) = e−k̄ k̄k

k!
, (1)

where k̄ is the average degree for G and P(k) denotes the probability
of observing k degrees for v ∈V .

To better investigate how rumors are propagated through the net-
work, we adopt a rule-based classification method that divides the
vertices into three convertible sets [8, 10, 17]: the spreader set S,
the ignorant set I, and the stifler set R. The dynamics of these three
classes are as follows:

• Ignorant with Density I(t). The ignorants are similar to sus-
ceptible individuals in classic SIR models. At time t > 0, an
ignorant has a probability λ to become a spreader when it
has contact with a spreader who is quite certain of the truth
of the rumor. Afterwards, it’s willing to spread the rumor in
the following time steps. Meanwhile, the ignorant has proba-
bility η to become a stifler, who has no interests in the rumor
anymore.

• Spreader with Density S(t). A spreader is contributing to
the propagation of rumor within G. Any spreader involved
in a pair-wise meeting attempts to “infect" other individuals
with the known rumor. At time t > 0, when a spreader con-
tacts with a stifler, the spreader has a probability γ to con-
vert to a stifler. In addition, we take the forgetting mech-
anism [10] into consideration and assume that at a certain
time, a spreader itself has forgotten the rumor and then turns
into a stifler at rate δ .

• Stifler with Density R(t). A stifler is contributing to the final
elimination of the rumor. In general, it is an absorbing state
in our stochastic model, and are accumulating its density by
turning both ignorants and spreaders into stiflers.

38

λ

η

γ

δ
Ignorant Spreader Stifler

γ

δ
Normal
Ignorant

Spreader Stifler

Blockchain
Ignorant

Bλ
Bη

Nη

Nλ

(a) SIR Model (b) Blockchain-Enabled SIR Model

Figure 2: The comparison of classic SIR model for social networks (Fig. 2a) and SIR model under blockchain technology (Fig. 2b). A new group,

the blockchain-enabled ignorants IB, are emerged and taking part in the information exchange.

To summarize all the dynamics considered above, we derive a
nonlinear system consisting of the following differential equations
for I(t),S(t) and R(t), respectively.

dI(t)

dt
=−(λ +η)k̄I(t)S(t), (2a)

dS(t)

dt
= λ k̄I(t)S(t)− γ k̄S(t)(S(t)+R(t))−δS(t), (2b)

dR(t)

dt
= η k̄I(t)S(t)+ γ k̄S(t)(S(t)+R(t))+δS(t), (2c)

with the corresponding model structure plotted in Fig. 2a.

2.2 System Dynamics and Practical Issues
We initialize a social network G with |V | = N with a spreaders

who know the rumor and are willing to spread:

I(0) =
N−a

N
, S(0) =

a

N
, R(0) = 0. (3)

We are interested in the dynamics of the rumor spreading model,
e.g., the peak density of spreaders and the velocity of rumor spread-
ing. It is also shown in [8] that when the system approaches to the
final states, there are only ignorants and stiflers left in the network,
while spreaders for untrusted information will die out. It is then
important to observe the final state of R(t), since a smaller R(t) in-
dicates that when the rumor appears again, the group of I(t) will
have to face the rumor spreading issue throughout the network.

The applicability of the model described in Section. 2a is also
justified in several previous studies [10, 18]. In [18] it showed that
such model is well fitted for real Twitter data on a set of real-world
news (e.g., Boston Marathon Bombings and Pope Resignation).

3. SYSTEM ARCHITECTURE
In this section, we first describe the proposed blockchain-enabled

protocol for information exchange, which can be integrated into
the social network model described in Section. 2. We then illus-
trate how such a blockchain-enabled algorithm can propel a trusted
social network as a whole.

3.1 Blockchain Protocols for Rumor Spread-
ing

To ensure both security and privacy of the information change
process and avoid large-scale spreading of untrusted piece of mes-
sages, we adopt the blockchain technology and design a protocol
consisting of private contract and public contract. We allocate an

accumulated virtual information credit for each participant in the
network, and use such credits to motivate the propagation of trusted
information.

3.1.1 Private contract
The private contract is negotiated and signed between the spreader

and the receiver offline. Consider a group of spreaders si ∈ S and
a receiver r. At timestep t, validation between si and r is executed
before a private contract is negotiated. For example, once the re-
ceiver r’s desires have been accomplished, it “pays" virtual credit
credrs(t) to the spreader si (denoted as credsi

), while the spreader
is in charge of sending the information in f osr(t) to the receiver
r (denoted as in f or). This “investment" of credit can pay off once
this piece of information is validated to be trustworthy. The ac-
cumulated credits increase for receiver r. On the contrary, once
the information is validated as a rumor, the accumulated credits of
receiver r would decrease.

In Algorithm 1, we illustrate the working principle of such a
peer-to-peer information-credit exchange program.

Algorithm 1 Private Smart Contract

Initialize: Initial spreader set S
Initialize: in f o← /0, cred← /0
Input: Contract Receiver r, r’s accumulated credit c(t)

for si in connection of r do
if si ∈ S then

si and r form a secure channel to negotiate contract
if Contract made then

c(t +1) = c(t)− credrs(t)
in f or← in f osir(t), credsi

= credsi
+ credrsi

(t)
break

end if
end if

end for

3.1.2 Public contract
The public contract is updated at every time step to record the

links of information propagation as well as the credit flows through-
out the social network. It serves as the public ledger for all informa-
tion transactions. A transaction on information is used as evidence
of contractor consent. This contract also makes the highest transac-
tion credit Cmax public to all existing participants of the information
exchange, which is available for decision-making in private con-
tract negotiation stage. The logs recording each transaction time,

39

credits along with the hash form the block. The pseudocode for
achieving such a chain of contract is sketched in Algorithm 2.

Algorithm 2 Public Smart Contract

Initialize: highest credit Cmax = 0; Credit of each member credi

Initialize: in f olist ← /0, credlist ← /0
for t ∈ T do

if Contract made then
Update Cmax through the network
Update credlist , in f olist

end if
end for

By employing the two-layer contract design for information ex-
change, we are able to construct a distributed, synchronized con-
tract network which is secure and resilient. Moreover, as the net-
work evolves, Cmax increases with respect to the network consen-
sus, which indicates either higher risk or higher credibility for ig-
norant to trust given information. Such public transaction infor-
mation would guide each member under blockchain contract make
their private decisions. Moreover, note that our blockchain-based
contract architecture is not closed only for contractors. For nor-
mal individuals in the social networks, they possess their original
information exchange process. In Section. 4 we compare the sim-
ulation results with different ratio of blockchain-based individuals
involved in the social networks.

3.2 Rumor Spreading Model Under Blockchain
We begin by firstly introducing a trusted model along with the

modeling assumptions. Then we justify how the blockchain tech-
nology would help inhibit the propagation of rumors on social net-
works.

The only difference between the model described here and the
model described in Section. 2 is that we have a group of initial
social network participants who have signed a blockchain-enabled
trust contract. For the simplicity, we denote the density of initial
members of such contract as IB and initial members without sign-
ing the contract as IN . Note that IN conforms to the similar igno-
rants’ dynamics as described in 2a, and the corresponding probabil-
ity of converting to a spreader or a stifler is λN and ηN , respectively.
Whenever there is information exchange between two individuals
with at least one individual belonging to IB, they run the secure
and reliable consensus protocol to agree upon the pre-defined vir-
tual credits for members under the trust contract. Since individual
coming from IB has access to the public information provided by
all existing blockchain contracts, she/he has a different estimate of
virtual credits of information exchange. Therefore, IB have differ-
ent dynamics compared to IN , and we denote the corresponding
probability as λB and ηB, respectively. We can derive the dynam-
ics of IN(t), IB(t), S(t) and R(t) on the blockchain-enabled social
networks:

dIB(t)

dt
=−(λB +ηB)k̄IB(t)S(t), (4a)

dIN(t)

dt
=−(λN +ηN)k̄IN(t)S(t), (4b)

dS(t)

dt
= λBk̄IB(t)S(t)+λNk̄IN(t)S(t)− γ k̄S(t)(S(t)+R(t))−δS(t),

(4c)

dR(t)

dt
= ηBk̄IB(t)S(t)+ηNk̄IN(t)S(t)+ γ k̄S(t)(S(t)+R(t))+δS(t).

(4d)

3.3 Mechanisms Analysis and Discussion
Rumor Spreading Rate: Once an individual has signed the trust

contract under blockchain protocols, it has an extra record coming
from the blockchain “transactions" list of information within the
whole network. This gives her/him an additional estimate of the
“value" for possible information exchange measured by accumu-
lated credits, and thus can make a better judgment of the authen-
ticity of information based on the risk of losing credits in certain
transactions.

In general, once the private contract between two individuals
has reached a higher value of the virtual credit, members from IB

are more cautious about the ongoing information exchange. Then
members from IB are less vulnerable when exposing to a rumor.
Meanwhile, they are more likely to lose interest in a rumor and
thus convert to stiflers directly.

Hence, with blockchain-enabled contract signed, ignorants from
IB have limited contributions to the spreader S but more contribu-
tions to the stifler R:

λB < λN , ηB > ηN . (5)

(a)

(b)

Figure 3: The temporal dynamics of the proposed blockchain-

enabled system (Fig. 3a) compared to a blockchain-free sys-

tem (Fig. 3b). Blockchain ignorants are under the blockchain contracts

throughout the time.

Forgetting Mechanism: with blockchain-enabled SIR model for
social networks, the forgetting mechanism not only takes account
of the “forget" process of spreaders, it also takes account of those
spreaders under blockchain contract, who are less likely to keep a
“fake" news in their public records. So with blockchain technology
enabled in a given G, δ tends to approach a higher value than the
model in 2a. This indicates that the social network could get a
higher absorbing rate from spreaders to stiflers.

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

=0.1

=0.2

=0.5

=1.0

=2.0

=0.0

=inf

0

0.1

0.2
0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 100 2 4 6 8 10

S
t
i
f
l
e
r
/
%

S
p
r
e
a
d
e
r
/
%

S
p
r
e
a
d
e
r
/
%

Days

Days

Days

Days

(a) (b)

(c) (d)

S
t
i
f
l
e
r
/
%

=0.1

=0.2

=0.5

=1.0

=2.0

=0.0

=inf

=0.1

=0.2

=0.5

=1.0

=2.0

=0.0

=inf

=0.1

=0.2

=0.5

=1.0

=2.0

=0.0

=inf

ε
ε
ε
ε
ε
ε
ε

ε
ε
ε
ε
ε
ε
ε

ε
ε
ε
ε
ε
ε
ε

ε
ε
ε
ε
ε
ε
ε

Figure 4: The temporal dynamics of the spreader density
S(t)
N (Fig. 4a and Fig. 4c) and the stifler density

R(t)
N (Fig. 4b and Fig. 4d) under different

ε .

4. NUMERICAL SIMULATIONS
Following the model introduced in Section.2, in this section,

we conduct numerical simulations to validate the performance of
blockchain-enabled rumor spreading on social network models, and
compare the results with blockchain-free rumor spreading perfor-
mance.

We are particularly interested in the rumor spreading process
from the initial stage t = 0 till the terminal stage t = T . That is
to say, in all our simulations over t ∈ {0,1, ...,T}, we start with
S(0) = 1, R(0) = 0 out of a fixed overall population of S(t)+R(t)+
I(t)= 10000, where I(t)= IB(t)+IN(t). Note that we constrain our
simulation to the case that stifler is the final absorbing state. Based
on the discussion in Section. 3.3, we set λB = 0.3, λN = 0.8, ηB =
0.7, ηN = 0.2 to investigate the influence of blockchain contract.
To better evaluate the performance of the blockchain contract in

our model, we introduce ε = IB(0)
IN(0)

to control the initial population

ratio. We also consider two group of settings for k̄, where k̄ = 10
corresponds to a sparse, traditional information exchange platform,
and k̄ = 50 corresponds to a dense, newly-emerged information ex-
change platform.

In the first experiment, we investigate two situations for the dy-
namics of rumor spreading process, which are shown in Fig. 3. In
Fig. 3a we show a group of setting with ε = 0.1, δ = 0.3, γ =
0.1, k̄ = 10. In Fig. 3b, we simulate the extreme circumstance in
which no member signs the blockchain contract with ε = 0, while
members from IN easily trust the rumors with λN = 0.99, ηN =
0.01, k̄ = 10. We observe from Fig. 3b that the rumor exists much
longer on the social networks (over 100 days compared with less
than 6 days in Fig. 3a). Moreover, the peak density for spreaders

is over 81%, which indicates that most of the members easily trust
rumors. In contrast, with a portion of the population enrolled in
the blockchain contract, the peak value of rumor density can be cut
down to 48% as is shown in Fig. 3a.

We then conduct simulations to evaluate the impact of the num-
ber of individuals who sign the blockchain contract, as depicted in
Fig. 4. Fig. 4a and Fig. 4b show the simulation results under k̄ = 10,
implying everyone on the social network possesses relatively sparse
connections (e.g., information exchange through newspapers and
phone calls). Fig. 4c and Fig. 4d are simulated under k̄ = 50, in
which everyone on the social network is densely connected (e.g.,
information exchange through online social networks). Note that
ε = inf indicates the scenario where all the individuals except the
initial spreader have signed the blockchain contract.

From Fig. 4a and Fig. 4c, we observe that as the number of
initial blockchain contractors increases (larger ε value), the peak
value of spreader density drops significantly. In addition, the peak
is deferred compared to the case with a smaller ε value, indicating
that the rumor spreading process has been delayed. This delayed
and weaken rumor spreading process also provides an opportunity
for external intervention (e.g., a credible clarification) to control
rumor spreading. One interesting finding is that if we consider a
dense social network which is more prevalent in today’s new me-
dia as well as online social networks, the rumor spreading process
is much quicker (Fig. 4c) compared to traditional rumor spreading
media. Results depicted in Fig. 4b and Fig. 4d also verify that with
a higher penetration of blockchain-enabled members, initial igno-
rants are more skeptical to the rumors and thus take a longer time
to finally convert to stiflers. In addition, the results also show that
R(T)

N < 1 decreases as ε increases in the terminal state.

41

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

δ=0

δ=0.3

δ=0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

δ=0

δ=0.3

δ=0.6

ε=0 ε=0.1 ε=0.2 ε=0.5 ε=1 ε=2 ε=inf

ε=0 ε=0.1 ε=0.2 ε=0.5 ε=1 ε=2 ε=inf

S
p
r
e
a
d
e
r
/
%

S
t
i
f
l
e
r
/
%

Figure 5: The spreader density
S(t)
N (Fig. 5a) and the stifler density

R(t)
N (Fig. 5b) at the end of day 2 under different ε and δ .

Our final simulation evaluates the mixed impact of ε and δ .
Since the blockchain contract would also trigger some converted
spreaders to be skeptical of rumors, δ can increase, and spread-
ers “forget" rumors and finally convert to stiflers. In Fig. 5a and
Fig. 5b, we show the density of spreaders and stiflers at the end of
day 2, respectively. We observe that a larger δ would drag down
the spreader density, because a larger δ represents the spreaders are
more willing to reconsider the rumor as fake information and con-
vert to stiflers. Meanwhile, a larger ε can eventually drag down the
spreader density, but as we observed in Fig. 4a and Fig. 4c, a larger
ε would also change the rumor spreading speed. Therefore, there is
no significant change in spreader density when ε is relatively small.

Results shown in Fig. 5 also motivate the mechanism design for
a blockchain-based information propagation contract. The design
of an appropriate virtual credit would not only control the system
dynamics (e.g., rumor spreading speed and the peak value), but
also regulate each participant’s behavior (e.g., distributing different
initial information credits).

5. CONCLUSION AND DISCUSSION
In this work, we investigated the dynamics of rumor dissemina-

tion in social networks with and without blockchain-enabled tech-
nology. We firstly introduced the graphical model setup for social
networks. We then illustrated how to incorporate the blockchain
contract into peer-to-peer information exchange process by em-
ploying virtual credits. The re-designed blockchain-enabled rumor
spreading model along with numerical simulation demonstrated that
blockchain technology would help in avoiding large-scale rumor
spreading. Such model setup and simulation results would mo-
tivate us to design trust-based information exchange system with
blockchain technology enabled.

In the future work, we would also like to inspect the extreme
case that is not included in this work, e.g., at initial point, most

of members are spreaders, or during the information propagation,
members are with low immunity. Contracts designed for extreme
conditions and large-scale social networks may be designed and
considered.

6. REFERENCES
[1] W. A. Peterson and N. P. Gist, “Rumor and public opinion,”

American Journal of Sociology, vol. 57, no. 2, pp. 159–167,
1951.

[2] P. Bordia, “Studying verbal interaction on the internet: The
case of rumor transmission research,” Behavior research
methods, vol. 28, no. 2, pp. 149–151, 1996.

[3] B. Doerr, M. Fouz, and T. Friedrich, “Why rumors spread so
quickly in social networks,” Communications of the ACM,
vol. 55, no. 6, pp. 70–75, 2012.

[4] G. W. Allport and L. Postman, “The psychology of rumor.”
1947.

[5] R. L. Rosnow and G. A. Fine, Rumor and gossip: The social
psychology of hearsay. Elsevier, 1976.

[6] Y. Moreno, M. Nekovee, and A. F. Pacheco, “Dynamics of
rumor spreading in complex networks,” Physical Review E,
vol. 69, no. 6, p. 066130, 2004.

[7] D. A. Vega-Oliveros, L. da F Costa, and F. A. Rodrigues,
“Rumor propagation with heterogeneous transmission in
social networks,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2017, no. 2, p. 023401, 2017.

[8] L. Zhao, H. Cui, X. Qiu, X. Wang, and J. Wang, “Sir rumor
spreading model in the new media age,” Physica A:
Statistical Mechanics and its Applications, vol. 392, no. 4,
pp. 995–1003, 2013.

[9] D. J. Daley and D. G. Kendall, “Epidemics and rumours,”
Nature, vol. 204, no. 4963, pp. 1118–1118, 1964.

[10] M. Nekovee, Y. Moreno, G. Bianconi, and M. Marsili,
“Theory of rumour spreading in complex social networks,”
Physica A: Statistical Mechanics and its Applications, vol.
374, no. 1, pp. 457–470, 2007.

[11] J. Brito and A. Castillo, Bitcoin: A primer for policymakers.
Mercatus Center at George Mason University, 2013.

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2008.

[13] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using
blockchain to protect personal data,” in Security and Privacy
Workshops (SPW), 2015 IEEE. IEEE, 2015, pp. 180–184.

[14] S. Chen, R. Shi, Z. Ren, J. Yan, Y. Shi, and J. Zhang, “A
blockchain-based supply chain quality management
framework,” in 2017 IEEE 14th International Conference on
e-Business Engineering (ICEBE). IEEE, 2017, pp.
172–176.

[15] J. Basden and M. Cottrell, “How utilities are using
blockchain to modernize the grid,” Harvard Business
Review, 2017.

[16] H. Shafagh, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of iot data,”
arXiv preprint arXiv:1705.08230, 2017.

[17] E. Beretta and Y. Takeuchi, “Global stability of an sir
epidemic model with time delays,” Journal of mathematical
biology, vol. 33, no. 3, pp. 250–260, 1995.

[18] F. Jin, E. Dougherty, P. Saraf, Y. Cao, and N. Ramakrishnan,
“Epidemiological modeling of news and rumors on twitter,”
in Proceedings of the 7th Workshop on Social Network
Mining and Analysis. ACM, 2013, p. 8.

42

43

Author index

Binotto, Alécio P. D. ..31

Chen, Yize ...37

Da Silva Momo, Fernanda ..31

Dasu, Tamraparni ..16

Debois, Søren ..8

Gaub, Mikkel ..8

Guerraoui, Rachid ...24

Høgnason, Tróndur ...8

Kanhere, Salil S. ...2

Kanza, Yaron ..16

Kim, Henry ...31

Kirkbro, Malthe Ettrup ..8

Li, Quanlai ..37

Lowe, Andrew..2

Lucena, Percival ..31

Madsen, Mads Frederik ..8

Papamanthou, Charalampos (Babis) ..1

Pavlovic, Matej ...24

Seredinschi, Dragos-Adrian ..24

Shelper, Philip ..2

Slaats, Tijs ...8

Srivastava, Divesh ...16

Wang, Hao ..37

44

Copyright - All rights reserved

	Introduction
	Blockchain Technology Applications on Agriculture
	Blockchain Business Networks

	The Brazilian Grain Exporters Business Network (GEBN)
	Case Study context
	Intrinsic Analysis
	Extrinsic Analysis

	Experiment
	Conclusions
	References
	Introduction
	Related Work
	Rumor Spreading Model
	Blockchain Technology

	Rumor Spreading Model
	Model Setup
	System Dynamics and Practical Issues

	System Architecture
	Blockchain Protocols for Rumor Spreading
	Private contract
	Public contract

	Rumor Spreading Model Under Blockchain
	Mechanisms Analysis and Discussion

	Numerical Simulations
	Conclusion and Discussion
	References

