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ABSTRACT

Blockchain-like protocols are flourishing. Maybe not surpris-
ingly, the differences among these protocols are often subtle
and difficult to understand. More importantly, it is often
unclear what the weaknesses of each of these protocols are
and how easily they can be attacked. The goal of this paper is
to shed light on the important differences between blockchain
protocols and the impact these differences can have in terms of
their vulnerabilities. We cover well-studied protocols ranging
from those inspired from the distributed systems literature
(e.g., PBFT), to recent research prototypes (e.g., ByzCoin or
Algorand), including the popular Bitcoin protocol.

Towards reaching our goal, we first precisely define the
problem that these protocols seek to solve. Then we propose
a unifying scheme that captures, at a high level, the behavior
of any blockchain protocol. Interestingly, this scheme is also
sufficiently low level to highlight the important differences be-
tween these protocols. We show that blockchain-like protocols
can be differentiated according to their degree of indulgence—
i.e., tolerance towards node misbehavior or towards network
asynchrony—which translates into the different vulnerabilities
of each of these protocols.

1. INTRODUCTION

Since the advent of Bitcoin, tens—if not hundreds—of vari-
ations on this protocol have been proposed. These variations,
which we call simply Bitcoin-like protocols, usually have a
twofold purpose: (1) to improve reliability with respect to the
original Bitcoin protocol by withstanding severe attacks, or (2)
to improve efficiency by either decreasing latency or increasing
throughput. Usually, these objectives are antagonist. For ex-
ample, decreasing the time it takes to commit a transaction in
a blockchain protocol can make that protocol more vulnerable
to double spending [22].

The differences between various blockchain protocols are
often subtle, and each improvement to a certain protocol may
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open vulnerability breaches which are not clear a priori. For
instance, it is perhaps alarming to see the recent uncovering
of critical errors in algorithms that can be used to implement
blockchains, namely in Tangaroa [10], Zyzzyva and FaB [3].
This makes the current blockchain ecosystem very chaotic,
which, to say the least, is rather disappointing, given that these
protocols are mainly aimed at implementing distributed trust.

The motivation of this paper is to help clarify this state of
affairs. Our aim is not a rigorous formalization of a specific
blockchain protocol and its properties, as done in a signifi-
cant body of related work [8, 18, 29]. Instead, we propose
a high-level, adversary-oriented approach to deconstructing
blockchain protocols. Ultimately, our goal is to offer a bet-
ter understanding of blockchain variations (e.g., efficiency or
reliability enhancements), discussing which variation opens
which vulnerability breach. Our principled approach is in-
spired from the theory of distributed computing. As we will
recall, blockchain protocols are solving a classical distributed
computing problem. We proceed in several steps.

First, we define precisely the blockchain problem, namely
the problem that seeks to be solved by the original Bitcoin
protocol and its many variants. Roughly speaking, the problem
consists of building a highly available (replicated) set of single
owner bank accounts while avoiding double spending. Indeed,
blockchain is both the name of (a) the chain of transaction
blocks that need to be replicated and maintained consistently
to enable Bitcoin transactions, as well as (b) the protocol that
maintains this consistency. In a sense, blockchain is the name
of the solution (b), as well as the name of the problem (a) being
solved. Whilst solutions have been discussed at great length,
we believe the problem specification has been largely ignored.

We define the problem precisely in terms of safety and live-
ness properties [5]. We then use classical results in distributed
computing to highlight how the blockchain problem is harder,
for example, than building a replicated file system [7], but is
equivalent to the celebrated consensus [31] and State Machine
Replication (SMR) problems [32]. It is known that there is
no deterministic solution to consensus if we assume that the
network can be asynchronous and at least one node can crash
(even if no node can act adversarially) [17]. No matter what
solution is designed, adverse network conditions can defeat it.

We then present a general scheme that unifies solutions to the
blockchain problem. We show how all solutions to this problem
restrict the power of the adversary in one way or another, e.g.,
either by assuming a bound on the number of misbehaving
nodes which an adversary controls, or by assuming a bound on
network asynchrony. We study here well-known protocols like
PBFT [11] or Bitcoin [27], as well as recent research efforts



such as ByzCoin [24], Bitcoin-NG [15], and Algorand [19].

In short, our general scheme builds upon two fundamental
components: a leader election subprotocol and a commitment
subprotocol. The goal of the first subprotocol is to elect a node
(or a set of nodes) to lead the task of ordering transactions. The
goal of the second subprotocol is to make sure the ordering is
global and the decision is unique, in case a new (or concurrent)
leader is elected and considers a different ordering. This intu-
itive decomposition helps describe the avenues for attack which
an adversary can take to subvert a blockchain protocol. It also
enables us to point out critical differences between blockchain
protocols as well as draw parallels between protocols.

We point out the existence of two classes of protocols. A
protocol which represents the first class is Castro and Liskov’s
PBFT [11]. This class of protocols preserves its safety prop-
erty, namely, consistency, despite the harshest conditions of
the network (i.e., asynchrony). We say that this class is in-
dulgent towards asynchrony and call it asynchrony-indulgent
(or A-indulgent). A representative of the second class is Bit-
coin [27]. This protocol continues executing (i.e., preserves
liveness) despite an adversary mounting a Sybil attack, pol-
luting the system with many misbehaving nodes. We say that
this protocol is behavior-indulgent (or B-indulgent).

We organize the rest of this paper as follows. We discuss the
problem addressed by blockchain protocols through the lens
of distributed computing, and introduce the A-indulgent and
B-indulgent classes of blockchain protocols (§2). We then in-
troduce a general scheme which captures the essential behavior
of any blockchain protocol, and use this scheme to discuss two
notable blockchain protocols—PBFT and Bitcoin—showing
how each is a typical example of respectively the A-indulgent
and B-indulgent class (§3). We also relate a few other protocols
to our general scheme and discuss their indulgence (§4), and
then we conclude this paper (§5).

2. THE PROBLEM

2.1 State Machine Replication and Consensus

On-line services often employ replication to ensure their
availability despite failures in the underlying systems. A com-
mon method to achieve this is via state machine replication
(SMR) [32]. In SMR, a service, such as a financial ledger or an
online shopping cart, is modeled as a deterministic state ma-
chine. The service consists of (1) a service state, and (2) opera-
tions that can be applied on this state. Typically, each replica
(or node) of the system maintains its own local copy of the state,
and updates this state as a result of applying client operations.

In SMR, the operations have to be deterministic, i.e. the
operation result and the new state it produces are a function
of only the previous state and the operation itself. Any service
state can thus be uniquely defined by the initial state and a
sequence of operations applied on this initial state.

In order to keep the service state consistent, replicas need to
apply the same operations in the same order. In other words,
SMR requires that the sequence of operations applied at all
replicas is the same; the main challenge in implementing SMR
is ensuring this requirement. The challenge can be reduced to
the fundamental problem of consensus (agreement) in a dis-
tributed system, where all replicas need to agree on what the
n-th operation of the sequence will be, for an ever-increasing
n. In Figure 1 we sketch the typical architecture of an SMR
system as we have presented it so far. The system comprises
6 replicas, labeled from 0 to 5. At the heart of the system
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Figure 1: State Machine Replication in action.

lies a distributed consensus algorithm which the replicas use
to agree on the sequence of incoming client operations and
maintain the consistency of the replicated state.

A consensus algorithm must satisfy three essential properties:

e Validity: The agreed-upon operation must be the input
of one of the replicas (e.g., a client operation).

e Agreement: The agreed-upon operation is the same
for all correct replicas.

e Termination: The replicas will eventually agree on
some operation.

Validity and agreement are safety properties: they define
events that must never happen in a correct execution. Ter-
mination, on the other hand, is a liveness property, defining
that a correct execution must make some progress [5].

2.2 Replicated Ledgers

We focus on a specific type of service: a ledger. Without loss
of generality, we assume that a ledger describes the movement
of money across different bank accounts. Concretely, a ledger
is an ever-growing sequence of transactions, each of which
transfers money between the users (i.e., clients) of the system.

Replicating a ledger is non-trivial, and even the relation be-
tween a ledger and consensus is not immediate. To understand
this relation, we start from the simple observation that a ledger
is no different than a fetch-and-add object [20]. As shown by
Herlihy [23], such an object has consensus number 2. This
means that, in a shared memory model, up to two processes
(but not more) can solve consensus among themselves if they
have access to fetch-and-add, i.e., a ledger object. Any object
weaker than a ledger, such as simple read-write register, is
insufficient to solve consensus in shared memory. In more prac-
tical terms, the problem of implementing a replicated ledger is
strictly more difficult than that of implementing a file system or
a key-value store, both of which have a read-write interface [7].

Note, however, that we are not interested in the shared mem-
ory model, but in the message passing model (detailed in §2.4).
Interestingly, in a message passing system, Delporte-Gallet et
al. [13] showed that replicating any object that has a consensus
number greater than one—such as fetch-and-add—is equivalent
to solving consensus. In other words, replicating a ledger is
equivalent to solving consensus. We also know that solving
consensus allows us to replicate any object via the SMR, ap-
proach. Thus, we conclude that in the message passing model
there is no object that is harder to replicate than a ledger.

In the following, we explain how the abstract notions of
consensus and SMR relate to distributed ledgers.



2.3 Ledgers as Replicated State Machines

Modeling a ledger as a replicated state machine is straightfor-
ward. The SMR state is an ordered sequence of all transactions
performed in the past, while each new SMR operation repre-
sents the appending of a new transaction to the ledger.

The system replicas must agree (i.e., solve consensus) on
which transaction should take the n-th position in the ledger.
Validity is easy to satisfy in this context using standard cryp-
tography, so we do not focus on it henceforth. The challenge is
to achieve both agreement (safety) and termination (liveness)."
We require a replicated ledger to have the following properties:

1. Safety: If a replica accepts a transaction 71" ordered
after some transaction 7”, then no replica accepts T'
without having ordered T” before T

2. Liveness: If a client issues a transaction, the transaction
is eventually accepted at all correct replicas.

We note that accepting a transaction has a nuanced meaning.
In certain protocols, like PBFT, there is a specific point where
a transaction becomes irrevocable (this is often referred to
as consensus finality [33]). We say that such a transaction is
accepted. Protocols which lack consensus finality, like Bitcoin,
always permit the revocation of transactions—albeit with di-
minishing probability. When a revocation occurs, it represents
a safety violation; in this sense, Bitcoin is prone to violating
safety (§3.2.2).

Informally, safety prescribes that different replicas never
have a different view of what the n-th transaction is. To
understand the importance of safety, imagine, for example, two
replicas Ro and R; participating in a protocol that replicates
a ledger. Both Ry and R; have the same view of the first n—1
transactions; only one of these transactions states that a client
called Eve receives 100$. However, Eve manages to make
replica Rp believe that the n-th transaction is “Eve transfers
1008 to Alice”, while convincing R; that the n-th transaction is
“Eve transfers 100$ to Bob”. Such a situation clearly violates
agreement. The balance in Eve’s account was 1008, so only one
of these transactions should be accepted by the system. If Alice
and Bob consult Rp and R; respectively to obtain the state of
the ledger, they may both believe to have received money from
Eve and provide her with some goods or services in exchange.

Such situations, where Eve effectively spends the same
money twice, are known as double spending. Indeed, in the
context of ledgers, safety violations can always be related to
double spending. Different protocols have different approaches
to prevent this problem. We elaborate later how double spend-
ing can occur in notable blockchain protocols (§3.2 and §4).

We recall that replicating a ledger is equivalent to replicating
any state machine, as we argued earlier (§2.2). Traditionally,
protocols like PBFT are employed for general-purpose SMR.
Recently, however, protocols in the vein of Bitcoin are used
as well towards implementing SMR (e.g., Ethereum, which
generalizes transactions to so-called smart contracts [2]). For
simplicity, we restrict ourselves to distributed ledgers which
contain only monetary transactions; these are sufficient to ex-
plain all principles discussed in this paper, and a generalization
to arbitrary state machines is straightforward.

Note that, in general, achieving only one of liveness and
safety is trivial. A protocol doing nothing never violates
safety, but violates liveness. On the other hand, it is easy
to make progress (satisfying liveness) if the output need not
be correct (violating safety).

2.4 The Adversary

We consider a message passing model where nodes commu-
nicate by exchanging messages. The adversary can control
various parts of the system, and there are two kinds of as-
sumptions on the capabilities of this adversary.

Behavior assumptions define how much control the ad-
versary can exert over the behavior of nodes (i.e., over the
correctness of their computation). These are typically known
as fault-threshold assumptions in distributed computing [26],
and a common example is that at least two thirds of replicas
are correct and follow the protocol faithfully [11], i.e., these
replicas are not corrupted by the adversary.

Synchrony assumptions define how much control the
adversary has over the speed of (otherwise corect) computation
at nodes, as well as over the message transmission delays and
delivery guarantees of the network. For example, the reliable
message delivery or the absence of network partitions both
fall under synchrony assumptions.

The precise definition of what the adversary can and can-
not do plays a great role. A truly Byzantine adversary has
no restrictions [25], but such a model is very restrictive in
terms of the solutions it allows. Perhaps the most common
assumption on a Byzantine adversary is that it cannot subvert
cryptographic primitives. For instance, standard cryptographic
assumptions prevent the adversary from inverting a secure
hash function or producing a valid cryptographic signature
without knowledge of the corresponding private key [11].

Another common assumption on the Byzantine adversary
limits its interference with the nodes which it does not directly
control. For example, it is often assumed that the adversary
cannot prevent correct nodes from making progress (e.g., com-
municating with each other) indefinitely through a denial of
service attack, a permanent network partition, or unremitting
dropped messages. Typically, the assumption is that messages
sent by correct nodes eventually reach their destination.

As we will see in the following sections, it is very often exactly
these fine details in what the adversary can and cannot do—and
for how long—that make the difference between the guarantees
various protocols offer. We will discuss different protocols also
from this point of view, i.e., we show how these assumptions
influence the protocols’ safety and liveness guarantees.

We ask ourselves the following question: What is necessary
to compromise the liveness and / or safety of a blockchain
protocol? Obviously, correctness of a protocol (i.e., upholding
both safety and liveness) always depends on every assumption a
protocol makes, otherwise the assumption would not be needed
in the first place. However, not necessarily both of safety and
liveness break when certain assumptions are violated. Focusing
primarily on safety, we discuss two classes of protocols:

e A-indulgent protocols: protocols indulgent to asyn-
chrony. These are protocols which focus on maintaining
safety while putting minimal restrictions on the adversary
in terms of synchrony.

e B-indulgent protocols: protocols which are indulgent
towards bad or malicious node behavior. These protocols
focus on maintaining safety while tolerating a relatively
large number of malicious nodes.

The famous FLP impossibility result [17] shows that solv-
ing consensus without restricting the adversary is impossible.
Protocols thus rely on various assumptions to circumvent this
impossibility and guarantee both safety and liveness. PBFT,
for example, can guarantee safety without any synchrony



assumptions on the adversary whatsoever. Synchrony assump-
tions are, however, required for liveness. Bitcoin, on the other
hand, remains correct even when allowing the adversary more
control over node behavior (an overwhelming fraction of nodes
can behave maliciously as long as they do not possess enough
computing power). Bitcoin, however, requires additional syn-
chrony assumptions to remain safe. In this sense, PBFT is
A-indulgent and Bitcoin is B-indulgent.

In the rest of this paper, we examine in more detail why
PBFT and Bitcoin are each a representative of one of these
classes. We then discuss other protocols, which, interestingly,
can lie in between the two classes (specifically, Algorand), or
are a combination of both classes (ByzCoin).

3. GENERAL SCHEME

In this section we introduce a general scheme that captures,
at a high level, the behavior of any protocol implementing
a blockchain. We also discuss how two notable blockchain
protocols can be expressed using our scheme, and show how
these protocols lie in sharp contrast to each other, representing
the A-indulgent and the B-indulgent class, respectively.

Implementing a blockchain that prohibits double-spending
is a challenging multi-level problem. First, most protocols rely
on a leader election mechanism. Leader election must ensure
that a unique leader presides over the protocol steps; this is
important for maintaining consistency, since two leaders can
engender disagreements. Generally, the existence of a leader
simplifies implementations and reasoning about distributed
protocols [28]. Blockchains operate in a Byzantine environment,
however, where some replicas—including the leader—may fail
arbitrarily. Even if a unique leader is correctly chosen, it
can act maliciously, e.g., by equivocating. A second problem,
then, is ensuring that transactions do not conflict and all
correct replicas maintain the same view on the blockchain data
structure. Yet a third problem can appear in protocols which
are optimistic and permit temporary conflicts to exist across
replicas; in such cases, additional measures are necessary to
resolve conflicts. We capture all these difficulties in a general
scheme that most algorithms follow in one way or another.

3.1 General Scheme

In broad strokes, we argue that the behavior of any protocol
implementing a blockchain comprises four basic steps. These
steps are as follows:

@ a client issues a transaction;

(2 a leader election protocol determines a leader to marshal
the transaction;

@ the replicas commit on an ordering proposed by the
leader, i.e., they externalize the output, for instance, by
replying to the client or by executing the transaction on
their local state;

(@ if the protocol allows conflicts to arise (which are often
called forks), then a recovery scheme triggers to reconcile
such conflicts.

The same replica may play different or multiple roles—be
it client, leader, or ordinary replica—in this four-piece scheme.
Indeed, in most protocols, each replica may become a leader at
some point. The most notable differences between blockchain
protocols arise at the level of steps @ and @, namely in
the protocol’s method of dealing with the problems of leader
election and commitment on a proposal. These steps are

particularly difficult because it is at either of these two points
where disagreements among replicas may arise, which can lead
to safety violations (i.e., double-spending). In some protocols
(such as PBFT), leader election takes place a priori, and the
same leader tends to be reused across multiple transactions, as
long as that leader behaves correctly and is able to communi-
cate with a certain fraction of the system replicas [11]. In other
protocols (such as Bitcoin), leader election happens on the criti-
cal path of handling transactions. Often, step @ is absent from
blockchain protocols. Unless we explicitly state what this step
entails, we consider it to be absent because the protocol avoids
disagreement by design, and hence no recovery is necessary.

3.2 Two Extremes of Blockchain Algorithms

We use our general scheme to present a breakdown, at a
very high level, of PBFT [11] and Bitcoin [27] protocols. Inter-
estingly, these protocols represent two extremes with respect
to leader election and commitment, which translates into each
of them belonging to one of the two indulgence classes, as we
show next.

3.2.1 PBFT - Practical Byzantine Fault Tolerance

In PBFT, clients send their transactions to some replica ¢
which they believe to be the current leader; if replica i is not
the leader, then i simply forwards the request to the actual
leader. This is step number (1) of our scheme.

In PBFT, the leader role switches from one replica to an-
other in a round-robin manner. Leader election—i.e., step
@takes place only if there is a suspicion that the current
leader has failed, prompting the system to switch to the next
leader by executing a view-change sub-protocol.? If the leader
acts correctly and the network is synchronous so as to permit
progress, then no leader election occurs.

Step @ in PBFT takes the form of a three-phase protocol.
This protocol is essentially a quorum-gathering technique with
Byzantine fault-tolerance, and ensures that if a correct replica
commits on the leader’s proposal, then no correct replica com-
mits on a different proposal. Any correct replica in the PBFT
protocol commits on some proposed ordering for a transaction
after that replica is certain that a majority of replicas also
commit on the same ordering.

A major drawback of PBFT-like protocols is that all replicas
must have complete and consistent knowledge of all other repli-
cas (i.e., the membership set) in the system at a given time.
This information can be statically setup at system deployment
and never changed, which is impractical for real-world repli-
cated ledgers, as participants are expected to change over time.
Dynamic membership can be achieved through a reconfigura-
tion module [4, 9]. For instance, the very same mechanism that
is used to agree on the contents of the ledger can also be used to
agree on the membership. In this case, membership is redefined
using a special transaction which changes the membership set.
When nodes commit on such a special transaction, they also
agree to update their view of the current membership set.

PBFT as an A-indulgent algorithm.
Informally, in PBFT any decision happens after the leader

2In PBFT, the leader is called the primary replica, and
each replica is a primary in a given view. The view-change
sub-protocol achieves the switching from a view to the next
(hence, it also switches the primary to a different one), which
we do not explain here. We refer the interested reader to the
original PBFT description for more details [11].



asks permission from a quorum; in this case, a quorum com-
prises more than 2/3 of the replicas [11, 26]. Hence, a superma-
jority of the system replicas must coordinate via a three-phase
protocol to agree on committing any decision. Irrespective of
how badly the network behaves—such as being asynchronous
or affected by a severe partition—PBFT always remains safe
as long as the !/3 threshold of faulty replicas is maintained.
For this reason, we call PBFT an A-indulgent algorithm. In
the classic sense defined by Guerraoui [21], PBFT is indulgent
towards asynchrony in the network, permitting arbitrary pe-
riods of such asynchrony, because each correct replica refrains
from taking any decisive step before consulting with a majority
of replicas to agree on that step.

The only attack vector on PBFT’s safety is controlling a
fraction of at least a third of all replicas. In a dynamic setting,
as we described earlier, gaining control over a third of replicas
can be easy for an adversary. In a Sybil attack [14], the adver-
sary simply spawns many replicas and makes them all join the
system. As creating replicas is comparatively cheap in terms
of computational and communication resources, enacting such
an attack is realistic in practice. When controlling more than
a third of replicas, such an adversary can convince two correct
nodes to accept different transactions, t1 and t2, at the same
position in their ledger. These transactions can be crafted so as
to permit double-spending, i.e., both t{ and ¢2 can be spending
the same money, as in our example with Eve from §2.3.

To prevent the adversary from controlling a big fraction of
replicas, PBFT requires an additional protection mechanism.
This mechanism can take various forms, such as an access
control scheme based on a certificate authority, a mechanism
able to identify Sybil identities [6], or requiring participants to
dispose of important amounts of a scarse resource (similar in
spirit to Bitcoin’s proof-of-work, which we will discuss next).
To wrap-up, PBFT is mainly susceptible to an adversary that
can manipulate the behavior of a large number of replicas in
the system. As noted, however, PBFT is A-indulgent in the
sense that its safety is resilient towards asynchrony.

The next algorithm we visit is Bitcoin. This protocol lies
in sharp contrast with PBFT in its indulgence, i.e., in the way
it deals with asynchrony or with adversarial behavior.

3.2.2 Bitcoin

Nodes in Bitcoin-like protocols are called miners. At step
@, clients issue their transactions to multiple miners, typically
through a gossip-based broadcast scheme. Each miner inde-
pendently assembles a block of transactions and then starts
executing a proof-of-work (PoW) algorithm.

The PoW algorithm serves, primarily, as a leader election
scheme, that is step (2). In contrast to PBFT (where leaders
succeed each other whenever the views change), in Bitcoin all
miners are striving to become a leader for every new block
of transactions. Briefly, any miner can become the leader
if it successfully solves a cryptographic puzzle—essentially,
inverting a hash function [27]—faster than other miners.

Upon finding a puzzle solution, the miner becomes the de
facto leader, and it broadcasts its solution, proposing an order-
ing and commencing step (3). The solution is uniquely bound
to the block which the miner assembled earlier, and chained to
the whole history of older blocks via a hashing algorithm, hence
giving the name of blockchain to the resulting data structure.

Step @ is more nuanced in Bitcoin than in other systems.
Briefly, when another node observes a block, committing on it
simply means appending the corresponding block at the end of

its local blockchain. Note, however, that leader election does
not guarantee a unique leader, because multiple miners can
solve the puzzle for the same position in the blockchain. Since
all puzzle solutions are equally valid, this gives rise to a fork.
To select a specific branch of the fork and recover from the
conflict, nodes in Bitcoin simply wait until one of the branches
is extended with subsequent solutions. This is known as “the
longest chain wins” rule, and represents step @ in our general
scheme. Typically, before committing some block b, nodes
wait until additional blocks—called confirmations—are found,
thereby extending b and raising the confidence that b will not
be abandoned. The number of confirmations can vary; a node
might even choose to wait for no confirmations and instantly
accept a block without any waiting time [1].

Bitcoin as a B-indulgent algorithm.

At a high level, PBFT and Bitcoin differ in one critical aspect.
Nodes in PBFT choose leaders and commit on values after con-
sulting with a majority of the system. Nodes in Bitcoin commit
on a value after some time passed and that value accumulated
a certain number of confirmations; the Bitcoin protocol, briefly,
relies on timing assumptions in the commitment step. For this
reason, Bitcoin does not qualify as an A-indulgent algorithm:
if timing assumptions do not hold (e.g., an adversary partitions
the system), then Bitcoin is vulnerable to attacks on its safety.
Instead, we label Bitcoin as a B-indulgent algorithm, since
this protocol tolerates adversarial behavior in the nodes, even
if the adversary controls the vast majority of the identities
(as long as their combined computation power stays small
enough). This difference between PBFT and Bitcoin reflects
mainly at steps @ and @ of these protocols.

Another important difference between Bitcoin and PBFT is
the notion of quorum. Unlike PBFT that relies on a quorum in
terms of the number of participating replicas, Bitcoin requires
the cooperation of replicas that together possess a majority
of the computing power in order to make decisions. While
this has severe impact on energy efficiency and performance
of the system, it serves as a protection against Sybil attacks,
towards which Bitcoin is not vulnerable.

Various attacks have been crafted against the Bitcoin pro-
tocol. Several attacks have to do with increasing the rewards
a miner can obtain in an unfair way, e.g., through selfish min-
ing [16], block withholding, or fork after withholding attacks.
Perhaps more important than fairness in rewards, we are inter-
ested in correctness attacks, that is, attacks that potentially
lead to double spending. An eclipse attack is interesting for
our discussion because it illustrates a concrete exploitation of
the optimistic nature of the Bitcoin protocol [22]. An attacker
with a sufficient number of IP addresses (in the order of thou-
sands) can pollute—i.e., eclipse—an honest node’s membership
view, so that the honest node only has connections with the
attacker and no other honest node in the Bitcoin network.
Essentially, the attacker partitions the honest node from the
rest of the network. Thereafter, the attacker creates a fork in
the blockchain: in one branch the attacker spends money on
certain goods, while in another branch the attacker is buying
something from the honest node. The former branch is part
of the actual Bitcoin network (and hidden from the eclipsed
node), while the latter branch is eventually orphaned. Note
that the attacker spent the same money on both branches.
To summarize, an eclipse attack is a way to exploit Bitcoin’s
timing assumptions towards carrying out a double spending
attack, i.e., violating Bitcont’s safety.



4. BLOCKCHAIN VARIATIONS

In this section, we position a few notable blockchain pro-
tocols (Algorand, ByzCoin and Bitcoin-NG) in relation to the
general scheme we introduced earlier (§3.1). For brevity, we
adopt a high-level view on each protocol and the focus will
be on their properties and assumptions (not on algorithmic
details) with respect to A-indulgence and B-indulgence.

4.1 Algorand

Algorand [19] is a recent blockchain protocol designed for
a permissionless environment, and exhibits very good per-
formance improvements over Bitcoin. In a nutshell, step @
in this algorithm uses verifiable random functions to sample
nodes across the whole system and elect a small committee.
This committee is meant to act, as a whole, in the role of
the leader. Algorand does not assign voting power based on
identities (as PBFT does), nor based on computational power
(as done in Bitcoin), but instead associates a weight with each
node in the system based on the amount of money that node
possesses. This approach is known as proof-of-stake.

Step @ in Algorand takes the form of a novel Byzantine
agreement algorithm, called BA*. At a high level, this is a two-
phase agreement protocol. Each phase comprises a series of
steps (typically between 2 and 11) leading either to agreement
among correct nodes or to a recovery subprotocol. Recovery
is triggered in case agreement is not reached (e.g., because of
a network partition) and a fork occurred. This subprotocol
represents step @, that is, reconciling conflicting views, and
highlights the importance of this step in our general scheme.

To ensure safety, Algorand assumes that the network expe-
riences bounded periods of asynchrony, and each such period
is followed by a bounded period of synchrony [19]. The exact
length of these periods is irrelevant; what matters to our
discussion is that safety in Algorand relies on the existence
of synchronous periods. A malicious adversary can therefore
exploit the assumption on the length of the synchronous period
towards subverting this system’s safety.

Algorand is an example of a protocol lying in between PBFT
and Bitcoin in terms of its indulgence. It is more A-indulgent
than Bitcoin: a violation of synchrony assumptions is not suffi-
cient to violate safety if all participants are honest (unlike in the
case of Bitcoin). Algorand is also more B-indulgent than PBFT,
in the sense that controlling the majority of nodes is not enough
to subvert the system (a substantial fraction of the money is
also necessary). To subvert Algorand’s safety, two conditions
must be met: (1) malicious nodes must control some part of
the money (not necessarily a big fraction), and (2) the network
must experience some asynchrony. Thus, Algorand is both less
A-indulgent than PBFT and less B-indulgent than Bitcoin.

4.2 Bitcoin-NG

Bitcoin-NG [15] is an important protocol because it intro-
duces the idea of decoupling leader election (step (2)) from
agreement on blocks (step @) In the original Bitcoin protocol,
as described in §3.2.2, these two steps are entangled: a single
leader is elected via PoW and nodes may immediately commit
on the leader’s proposal (if they choose to do so), or may
wait for some confirmations, but no additional mechanism is
necessary towards commitment.

Using this decoupling strategy, Bitcoin-NG can reach supe-
rior throughput compared to Bitcoin. Clearly, however, the
elected node has too much responsibility: on its own, this
leader can throw the system into a state of inconsistency by

introducing forks and allowing double-spending. Essentially,
this system has very similar assumptions and vulnerabilities as
Bitcoin, and thus we consider it a typical B-indulgent protocol.

4.3 ByzCoin

ByzCoin [24] is an instance of a hybrid blockchain proto-
col [30], as it combines PBFT-style with Bitcoin-style agree-
ment. Other such protocols exist [12, 30]; we focus here on
ByzCoin, but we believe that our conclusions equally apply
to other hybrid algorithms.

The common motivation underlying hybrid protocols is that
neither Bitcoin’s agreement (based on PoW), nor PBFT-style
agreement are perfect, but they are in a sense complementary
to each other. The former is very slow but has the advantage
of being resilient to Sybil attacks. The latter is faster, but
performs optimally if running on a small set of nodes (e.g., 4 to
7 replicas), and has no in-built protection against Sybil attacks.
Hybrid protocols combine these two styles of agreement in the
hope of avoiding their individual pitfalls and merging their
specific strengths.

Similarly to Bitcoin-NG, ByzCoin decouples leader election
(step (2)) from agreement on transactions (step (3)). However,
leader election in ByzCoin means electing a whole committee
of nodes (not just a single one). This committee runs PBFT,
which is used to quickly serialize new transactions.

To be part of a committee, a node must pass a simple
requirement: run PoW and be one of the last w nodes to find
a solution. The parameter w, called a “share window” [24],
defines the number of successful miners that will form the com-
mittee. This parameter encapsulates an important trade-off,
from the point of view of this protocol’s guarantees. On one
hand, smaller w means smaller committee and a bigger threat
to safety, as it is more likely that an adversary with sufficient
computational resources gains control of the committee—i.e.,
obtain a third of total shares in the PBFT committee—and
hence subvert the system’s safety, as we explained earlier
(83.2.1). On the other hand, bigger w means larger commit-
tees: less potential for an adversary to control the committee,
but increased risk of losing liveness if a third of the nodes
in the committee are unresponsive, e.g., by being inactive at
certain times or just leaving the network.

From the point of view of indulgence, ByzCoin is a combi-
nation of an A- and B-indulgent algorithm. The PBFT-like
consensus algorithm ensures safety in periods of asynchrony,
while the Bitcoin-like leader election protects against malicious
node behavior such as Sybil attacks.

5. CONCLUSIONS

In this paper, we have presented a brief overview of several
notable blockchain protocols, relating them to well-established
concepts from distributed computing. We proposed a general
scheme which unifies classical (PBFT-like) state machine
replication protocols with the increasingly popular blockchain
protocols. Our main goal was to shed light on the differences
between these protocols. In doing so, we also pointed out the
existence of two classes of protocols, defined in terms of how an
adversary can go about subverting their safety. Asynchrony-
indulgent protocols maintain their safety despite the harshest
conditions of the network. A second class is that of malicious
behavior-indulgent protocols, which maintain safety while
tolerating big numbers of malicious nodes. We have shown how
some protocols in the blockchain ecosystem are representatives
of one class or another, or how they combine these two classes.
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