Decentralized Markets
Evaluating Uniform and Non-Uniform Prices

Jason Vranek
jvranek@ucsc.edu

ABSTRACT

We demonstrate that having a uniform clearing price pro-
vides investors with protection from front-running, trade-
collisions, cancel-collisions, and stale orders when compared
to Continuous Double Auctions (CDA) in a blockchain en-
vironment. This is valuable to investors and would prevent
market failures. We present a simulation environment to
measure the relative performance of investors, market mak-
ers, and miners in CDA, Frequent Batch Auctions (FBA),
and Kyle-Lee Flow Markets (KLF). We provide experimen-
tal results indicating that Continuous Scaled Limit Orders
in a batch auction format provide the least cost to social wel-
fare in an environment where miners choose to front-run.

1. INTRODUCTION

Current fully on-chain decentralized exchange (DEX) im-
plementations suffer from combinations of slow trading expe-
riences, front-running, and trade and cancel collisions, that
will only scale as trade volume increases. These problems
arise because the state of the exchange is dependant on the
ordering of message arrivals. For example, in a volatile mar-
ket, fast cancellations are necessary as an arbitrageur can
snipe stale orders if they have a speed advantage. Simi-
larly, in a fully on-chain DEX, the speeds of cancellations
are dictated by gas prices, which can lead to arms races
in fees. Exchanges circumvent this message ordering prob-
lem by adding centralization in the form of TECs [1] or
the StarkDEX service [2]. Adding centralization may elimi-
nate collisions and provide traders with the means to quickly
change their orders off-chain, but comes at the cost of adding
trust. This means trusting that the exchange does not cen-
sor or front-run which are difficult to detect. Centralization
introduces a single point of failure, and a clear target to be
hacked. One thing to note however is that this is still prefer-
able to a CEX where the users must trust the exchange with
custody of their assets. We propose that a uniform clearing
price can mitigate the impact of front-running.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and FAB 2020.
Third International Symposium on Foundations and Applications of
Blockchain (FAB ‘20) May 1, 2020, Santa Cruz, California, USA.

Yilin Li
yli568@ucsc.edu

2. ORDER TYPES
2.1 Standard Limit Orders (SLO)

The standard limit orders are defined as messages with
three parameters: a buy-sell indicator, a quantity Qmax,
and a limit price P. A standard buy limit order conveys
the message Buy up to Qmax (shares) at a price of P (dol-
lars per share) or better. For an order placed at time to,
let Q(to,t) denote the cumulative quantity executed during
the time interval [to,t] for ¢t > to. Let p(t) denote the most
recent transaction price, and define pmin(to,t) as the mini-
mum price p(t) during the interval ¢ € [to,t]. Then Q(to,t)
satisfies

Qmax if Pmin (t07t) < P,
Q(t07 t) = Oé(t(), t)Qmax lf Pmin (t07 t) - P,
0 if pmin(to, t) > P.

where a(to,t) € [0,1].
Similarly, for a limit sell order, Q(to, t) satisfies

Qmax lf pmin(t07t) > P7
Q(t(), t) = a(th t)Qmax if Pmin (t()7 t) = P,
0 if Pmin (to, t) < P.

where a(to,t) € [0,1].

If the minimum market price pmin(to,t) is above (below)
the limit price P, nothing is bought (sold); if it is below
(above) the limit price, the order is fully executed (Q(¢o,t) =
Qmax)); if it exactly equals the limit price, then the quantity
executed Q(to,t) depends on the rule for allocating traded
quantities when it may not be possible to satisfy all demands
(supplies). This allocation rule determines a(to,t), which is
a monotonically non-decreasing step function of time mea-
suring the fraction of the order executed up to time t.

With standard limit orders, the limit price P is an integer
multiple of the minimum tick size, and the quantity Qmax
is an integer multiple of the minimum lot size. The discrete
price grid makes an allocation rule to determine a(to, t) nec-
essary in that the market demand and supply schedules de-
fine quantities as discontinuous step functions of price and
there may not be a unique point of intersection.

2.2 Continuous Scaled Limit Orders (CSLO)

The continuous scaled limit orders are defined as mes-
sages with five parameters: a buy-sell indicator, a quantity
Qmax, two price levels Pr and Py (with Pp < Pg), and the
maximum trading speed Umax. Such an order conveys the
message: Buy up to a cumulative total of Qmax (shares) at

maximum rate Umax (shares per hour) at prices between Pr,
and Py (dollars per share). The trading speed or flow de-
mand U(p(t)) is a function of the market clearing price p(¢)
given by

Umaz if p(t) < PL
Ulp(t) = § HE=20Upnar if P < plt) < P
0 if p(t) > Py

Similarly, the flow supply U(p(t)) is also a function of the
market clearing price p(t) given by

Umaz if p(t) > PH
Up(t)) = { BO=LLUpnae if PL < p(t) < P

0 if p(t) < Pr

If the price is strictly below (above) Pr, (Pm), the trader
buys (sells) at the rate Umax. If the price is strictly above
(below) Py (Pr), the trader trades zero shares. If the price
is between Pr and Py, the demand (supply) schedule is
interpolated linearly, making its slope Umax/(Pg — Pr). The
cumulative quantity executed by time t is

Qo= [viprir

to

Suppose the aggregate demand and supply schedules in-
tersect at a point where either of the two is not flat. Then
the excess demand schedule D(p) — S(p) is strictly decreas-
ing in the neighborhood of the intersection. The exists a
best bid price Pp and best ask price P4, both on the tick
grid, where P, is one tick size large than Pp, and there is
excess demand at the best bid and excess supply at the best
ask price given by

D(Pg)—S(Pg) >0 and S(Pa)— D(Pa)>0
Define the relative order imbalance w € [0, 1] by

D(Pg) — S(Pg)
D(Pg) — S(Pg) + S(Pa) — D(Pa)

Then the market clearing price p(t) is uniquely defined by
p(t) = P +w(Pa — Pg)

w =

Intuitively, the price is a weighted average of the two prices
Pp and P4, with weights 1 — w and w proportional to the
excess demand and supply at these prices.

3. MARKET TYPES
3.1 Continuous Double Auction (CDA)

Continuous Double Auctions (CDA) are one of the most
common forms of marketplaces and has emerged as the dom-
inant financial institution for trading securities and financial
instruments. Indeed, the major exchanges, like the NAS-
DAQ and the NYSE and the major foreign exchange (FX),
apply variants of the CDA model. In addition, CDA also
provides a dynamic and efficient approach to the decentral-
ized allocation of scarce resources.

In the CDA model, bids and asks may be submitted at
anytime during the trading period. If at anytime, there
are open bids and asks that match or are compatible in
terms of prices and requirements, a transaction is executed
immediately. In this auction, orders are ranked from the

highest to the lowest to generate demand and supply profiles.
From the profiles, the maximum quantity exchanges can be
determined by matching asks with demand bids.

3.2 Frequent Batch Auction (FBA)

Frequent batch auction is proposed to eliminate the race
of latency arbitrage from continuous time auctions, and by
having batch auctions with some high frequency, say once
every 100 milliseconds, the market would establish an equi-
librium price that matches supply and demand, minimizing
the proportion of unfilled buy-and-sell orders. FBAs use
a standard limit order book, and FBAs do not eliminate
the need for an allocation rule like time priority or pro rata
order matching. Since the market clears in increments of
blocks, there will typically be excess supply and demand at
the market clearing price. FBAs require an allocation rule
for determining which executable orders do not get executed
at the market clearing price. One possibility is to give gas
fee priority to orders received with higher gas fees while us-
ing pro rata matching for orders received in the same batch.
Another possibility is to give time priority to orders received
in earlier batches.

4. SIMULATION

4.1 Blockchain Environment

In order to evaluate the different order types in a decen-
tralized setting, we simulate a blockchain environment with
some simplifications. We assume constant block publica-
tion intervals with unlimited block sizes, which allows for
all pending orders in the mem-pool to be added to the next
block. A publicly observable pool of pending transactions
called the mem-pool receives orders in continuous time.

For simplification, there is only a single miner in the sim-
ulation. Their role is to form a frame consisting of pending
orders in the mem-pool, and publish it as a new block at a
fixed interval. In order to capture the latency from propa-
gation delays in a peer-to-peer network, the miner will wait
a random delay after a block publication to form their next
frame. This also allows for the existence of a single miner to
capture the behavior of there being multiple miners. Upon
publication, all orders are processed serially in descending
order based on the orders’ gas fees.

When an order is processed, the state of the public order
books are changed to include the new order. How this state
is changed depends on the market type being simulated.
The state of every past order book is observable as in a real
distributed ledger. We assume that the miner will allocate
orders from the mem-pool to their frame based on the orders’
gas fees.

4.2 Player Behavior

4.2.1 Investors

At times determined by a normal distribution, a random
investor is chosen to generate a bid or ask order and send
it to the mem-pool to be processed. There are two fixed
means g1 and po that are respectively the centers of the
bid and the ask normal distributions that the investor will
price their orders from. The average of the overlap of the
two distributions is the unobservable fundamental value of
the asset being traded. The investor’s gas fee is drawn from

a uniform distribution between [0 : 1] and trade volume is
fixed at 1.0 units.

4.2.2 Miner

To simulate propagation delay in a peer-to-peer network,
the sole miner waits a random delay the last block is pub-
lished to construct a frame. A frame is a collection of pend-
ing orders from the mem-pool that are sorted in decreasing
order based on gas fees. The miner’s frame formation strat-
egy is to select in decreasing order the N pending transac-
tions with the highest fees.

A front-running miner is the worst-case scenario for a de-
centralized exchange as they can always execute their order
first within a block. Thus as a simplification, the miner
is only front-runner in this simulation. During the frame
formation, with some probability they will duplicate a prof-
itable order and place it at the top of their frame to be
processed first with no gas fee.

A frame is kept unobservable and immutable to all players
until the fixed publication time arrives. Once published it
is referred to as a block. The orders are processed serially
in decreasing gas cost order and according to the current
simulated market’s rules thereby updating the state of the
public order book.

4.2.3 Makers

Each maker is randomly assigned a behavioral type that
dictates their strategy and an initial random inventory. Mak-
ers observe the order books and update their inferred fun-
damental value by averaging across the previously seen bids
and asks that have arrived to the mem-pool. This is a sim-
plification as the true fundamental value is fixed in this sim-
ulation.

Each maker will have an assigned type of either Aggres-
sive, RiskAverse, or Random. These types are used to deter-
mine how the maker chooses to price their orders, their gas
fee, and set their order’s trade volume. Aggressive makers
have tighter spreads, RiskAverse makers have wider spreads,
and Random makers are uniformly distributed between the
two. Each maker’s pricing strategy is a function of their
inventory with the goal to operate with minimum held in-
ventory. Aggressive makers will place strictly higher gas
fees than the mean, RiskAverse at the mean, and Random
normal around the mean.

To incentivize makers to reach zero inventory, a tax is
imposed on makers after every batch. Every unit of in-
ventory, whether positive or negative, is taxed by a config-
urable amount. At the end of the simulation, liquidation
occurs, when all the makers with negative inventory must
purchase that many shares at the fundamental value, and
all the makers with positive inventory must sell at the fun-
damental value.

The flow of a maker can be summarized as follows: Makers
will track all of the orders submitted to the publicly observ-
able mem-pool and infer a fundamental price. The maker’s
behavioral type determines their spread, and their current
inventory determines how to shift their spread relative to
the inferred fundamental price, as well as how to set their
trade volumes. Gas prices are determined based on their
behavioral type. Once a bid and ask pair has been created,
they are sent to the mem-pool to be mined.

4.3 Simulated Markets

We simulate three different market formats: CDA, FBA,
and a variation of FBA using CSLO’s which we will denote
as a Kyle-Lee Flow market (KLF). The following overview of
the simulation is equivalent across the market formats with
the differences being in the order types and the way orders
are processed within a block.

Investors continuously enter orders priced by normal bids
and asks distributions at random times. (SLO’s for CDA
and FBA, CSLO’s for KLF). After a block is published,
Makers infer fundamental price from previously seen mem-
pool orders and produce bid and ask orders based on their
behavioral type. All orders are added to the mem-pool in
continuous time.

The miner waits for the propagation delay then forms a
frame from the current N mem-pool orders, inserting their
front-run order with some probability. The Miner will now
sleep (mine) until publication time, and during this time
orders may still arrive to the mem-pool but will not be added
to the frame. At publication time, the orders are processed
according to the market type begin simulated:

e CDA:.: For each SLO in the frame, if it is a bid, then we
check it against the best ask. If bidprice > bestaskprice
they ”crossed” and transact at bestaskprice, otherwise
it will be added to the bids book. Likewise for an ask
if askprice < bestbidprice they transact at bestbidprice,
otherwise it will be added to the ask book. New orders
can potentially fill multiple orders if they continue to
cross the next best order in the book.

e FBA: SLOs in the frame are added to the order books
and sorted by price. A batch auction calculates a uni-
form clearing price based on all the current bids and
asks. As a simplification the auction occurs at the end
of the block after the last order has been added to
the order book. Inventory is exchanged at the uniform
clearing price in price-priority order.

e KLF: CSLOs in the frame are added to the order book
and sorted by price. The uniform clearing price can
be found via a binary-search through the aggregate
supply and demand schedules for a crossing point. As
a simplification the clearing price search occurs at the
end of the block after the last order has added to the
order book. Each order transacts at the clearing price
with Volume = Schedule(Clearing Price).

The leftover orders remain in the order book for the next
batch and the miner waits until the propagation delay ex-
pires to form the next block and this process repeats.

4.4 Performance Metrics

4.4.1 Volatility of Price

We measure the price volatility as the standard deviation
of price changes under different market formats.

Std(P, — Pi_y)
4.4.2 Pricing Deviations from Fund. Values

We measure the pricing deviations from fundamental val-
ues as the root mean squared deviation (RMSD) of the trans-
action prices relative to the fundamental value.

t
RMSD — \/1/ (P, — V,)2dr
0

4.4.3 Social Welfare Cost

We measure the social welfare cost as the sum of gas fees
collected by the miner, the tax on inventories paid by makers
and the other profits of miner/makers. Thus, it becomes
the difference between total profits of all players and the
investors’ profits.

4.5 Results
4.5.1 Varying Maker Spread

Table 1: Summary Statistics for Simulation Data

(Varying Maker Spread)

KLF FBA CDA
Liquidation no yes no yes no yes
Panel. A (maker spread = 1.0)
Std(P; — Pi—1) 0.06 0.06 0.20 0.20 0.25 0.25
RMSD(P, — V4) 0.12 0.12 0.81 0.81 0.79 0.79
Welfare Cost 220.44 235.88 4016.91 117.50 4304.02 218.76

Table 2 reports the performance metrics when varying the
miner’s probability of front-running. From Panel A to Panel
E, the miner’s front-running probability increases from 0 to
1 in increments of 0.25.

From each panel, KLF always results in the least price
volatility, the least pricing deviation from the fundamental
value, and the least social welfare cost. Additionally, CDA
has a quarter more of the volatility of price and pricing devi-
ation than the FBA. The liquidation only has an impact on
the social welfare, which results in a greater social welfare
cost when taken into account for flow orders whereas a much
lower welfare cost for FBA and CDA. The similar reasons as
the above analysis also apply here. As we increase miner’s
probability of front-running, we observe an increasing trend
in price volatility and RMSD.

Table 2: Summary Statistics for Simulation Data

(Varying Miner Front-Run Probability)

Panel. B (maker spread = 1.5)

Std(P; — Pi—1) 0.07 0.07 0.28 0.28 0.32 0.32

RMSD(P,—V;) 0.14 0.14 0.99 0.99 0.99 0.99
Welfare Cost 227.56 311.75 5874.10 117.05 6604.63 158.01

Panel.C' (maker spread = 2.0)

Std(Py — Py—1) 0.07 0.07 0.32 0.32 0.38 0.38

RMSD(P, —V;) 0.12 0.12 1.13 1.13 1.10 1.10
Welfare Cost 296.70 344.66 7406.14 133.39 8400.35 159.60

Panel.D (maker spread = 2.5)

Std(Py — Pi-1) 0.07 0.07 0.39 0.39 0.43 0.43

RMSD(P; — Vi) 0.13 0.13 1.26 1.26 1.20 1.20
Welfare Cost 346.90 359.56 8912.75 89.52 9239.49 114.26

Panel. E (maker spread = 3.0)

Std(P, — Pi—1) 0.07 0.07 0.44 0.44 0.47 0.47

RMSD(P;—V;) 0.15 0.15 1.30 1.30 1.33 1.33
Welfare Cost 250.68 398.13 9899.88 125.58 10776.88 124.95

Panel. F (maker spread = 3.5)

Std(P; — Pi—1) 0.08 0.08 0.48 0.48 0.51 0.51

RMSD(P, — V4) 0.15 0.15 1.45 1.45 1.40 1.40
Welfare Cost 438.28 444.60 10866.72 150.55 11289.83 172.35

Panel.G (maker spread = 4.0)

Std(P; — Pi—1) 0.07 0.07 0.52 0.52 0.53 0.53

RMSD(P,—V;) 018 0.18 1.48 1.48 1.40 1.40
Welfare Cost 256.58 457.52 11648.46 192.23 12065.77 226.35

Table 1 reports the performance metrics when varying
the market makers’ spread. From Panel A to Panel G, the
maker’s base is increased from 1.0 to 4.0 in increments of
0.5.

‘We have the consistent result that KLF using CSLOs gives
the least price volatility, the least pricing deviation from fun-
damental value, and the least welfare cost compared to FBA
and CDA. By comparison, CDA has the worst performance,
partly because there is a time priority involved. One point
worth the noting is the social welfare cost. For CSLOs, the
welfare cost does not differ a lot whether taking the liquida-
tion into account or not and it is relatively lower when there
is no liquidation. On the contrary, for FBA or CDA, the so-
cial welfare is very positively affected when the liquidation
is taken into consideration. This huge difference is largely
due to the cut in makers’ profits and the raise in investors’
profits when liquidation is mandated as is shown in the raw
data.

From the comparison among panels, we can see when mak-
ers are least aggressive (with the greatest maker spread),
there is the least pricing deviation from the fundamental
value, although the price volatility varies.

4.5.2 Varying Miner Front-Run Probability

KLF FBA CDA

Liquidation no yes no yes no yes

Panel.A (front-run prob. = 0.00)

Std(P, — P_1) 006 0.06 016 016 022 0.22

RMSD(P; — V;) 0.15 0.15 0.71 0.71 0.77 0.77
Welfare Cost 49.89 241.55 3358.11 113.89 3799.57 178.21

Panel.B (front-run prob. = .25)

Std(P, — P_) 006 006 018 018 022 0.22

RMSD(P; — V;) 0.13 0.13 0.76 0.76 0.79 0.79
Welfare Cost 125.46 255.78 3846.34 96.53 4080.50 179.32

Panel.C (front-run prob. = .50)

Std(P, — Pi-1) 0.06 0.06 0.19 0.19 0.23 0.23

RMSD(P, — V;) 0.12 0.12 0.73 0.73 0.74 0.74
Welfare Cost 233.78 246.06 3895.13 98.84 4227.14 163.99

Panel.D (front-run prob. = .75)

Std(P, — Py—1) 0.05 0.05 0.19 0.19 0.25 0.25

RMSD(P, —V;) 0.12 0.12 0.79 0.79 0.81 0.81
Welfare Cost -3.31 250.89 3441.22 127.27 4721.92 202.19

Panel.E (front-run prob. = 1.00)

Std(P, — P,—1) 0.06 0.06 0.20 0.20 0.25 0.25

RMSD(P; — V4) 0.12 0.12 0.81 0.81 0.79 0.79
Welfare Cost 220.44 235.88 4016.91 117.50 4304.02 218.76

In summary, the results demonstrate that CSLOs, pro-
vide the greatest reduction in the volatility of price and the
pricing deviation from the fundamental value, resulting in a
more efficient market outcome.

S. CONCLUSION

We ran simulations to study and compare the performance
of CDA, FBA, and KLF market formats in the blockchain
environment. Each market format is studied under differ-
ent conditions, varying the makers’ spread and the miner’s
probability of front-running.

We find that KLF provides the least price volatility, the
least pricing deviation from fundamental value, and the least
welfare cost when compared to the CDA and FBA markets.
When market makers are less aggressive submitting their
bid-ask pairs, it decreases the volatility of price as well as the
pricing deviations. From the miner’s perspective, the greater
probability of front-running results in a more volatile price
and greater price deviation from the fundamental value.

Future work for this simulation can include smarter miner
and maker strategies, and potentially endogenous investors.
We wish to investigate how modifications to the simulation
parameters and player strategies affects the market’s out-
come.

6. REFERENCES

[1] https://blog.0xproject.com/introducing-0x-protocol-v2-
9f5bda04d38d

[2] https://www.starkdex.io

[3] Aldrich, Eric Mark and Lépez Vargas, Kristian,
Experiments in High-Frequency Trading: Comparing
Two Market Institutions (February 21, 2019).

[4] Kyle, Albert (Pete) S. and Lee, Jeongmin, Toward a
Fully Continuous Exchange (July 4, 2017)

[5] https://github.com/JasonVranek/MarketSim

