TrustDBle: Towards Trustable Shared Databases

Muhammad El-Hindi
TU Darmstadt

Simon Karrer
TU Darmstadt

Gloria Doci
TU Darmstadt

Carsten Binnig
TU Darmstadt

Research Short Paper

ABSTRACT

In this paper, we present TrustDBle [‘trastobol], a trusta-
ble DBMS which can be used for shared access by multi-
ple parties. TrustDBle is based on our previous work on
BlockchainDB which uses blockchains as an auditable stor-
age to guarantee transparency and auditability of any data
change. TrustDBle extends this work with a secure OLTP
engine that implements verifiable ACID-compliant transac-
tion execution on shared data while preserving scalability.
In this work we discuss the main design choices and con-
siderations for building trustable data management systems
and show first results from our work on TrustDBle.

1. INTRODUCTION

Motivation. Databases (DBs) and database management
systems (DBMSs) are a proven technology to efficiently store
and query data. They scale very well to support a large
number of nodes and amounts of data. Further, they offer
standardized interfaces, such as SQL, and their use is well es-
tablished among developers and operation teams. However,
DBMSs are centralized solutions that assume a single data-
base owner who solely can query and modify the data. Yet,
in many use cases the data might belong to several different
entities. For example, in typical supply chain scenarios the
information about goods along the supply chain needs to be
tracked by many different companies.

The traditional solution for shared data access is that each
company keeps a local copy of the database and uses custom-
developed data integration solutions to synchronize state be-
tween the different instances. However, this way of data
sharing comes with many different drawbacks. For example,
once data leaves the database of the data producer it is not
transparent for this data producer to whom the data will
be made available or how the data might be altered. This
opens up the door for data misuse in different directions.
For instance, in a food supply chain, the best-before date
might be “faked” to resell products even after they expired.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and FAB 2020.
Third International Symposium on Foundations and Applications of Block-
chain (FAB ‘20) May 1, 2020, Santa Cruz, California, USA.

A solution to this problem can be achieved with block-
chains (BCs) (or distributed ledgers in general) that can be
used as shared databases. First, BCs record all updates in
an immutable manner and thus provide an auditable stor-
age that can be used to find out how data was changed over
time by whom. Second, BCs require consensus of the par-
ticipants before a data update can be committed. While
BCs thus seem to address the aforementioned issues, they
lack the performance and scalability required for many use
cases. For example, BCs offer transaction rates of 100's or
1000s transactions per second, while databases can achieve
100, 000's transactions per second. Further, BCs introduce
new interfaces and programming models that many organi-
zations are not familiar with. Due to the lack of standards
almost every blockchain platform even uses different inter-
faces, which increases the complexity and risk for adopting
this technology in enterprises.

Contribution. This paper presents TrustDBle [trastobsl],
a trustable DBMS which can be used for shared access by
multiple parties. TrustDBle is based on our previous work
[4] that shows how a scalable storage manager can be built
on top of blockchains to provide high performance and au-
dibility of all data changes at the same time. However, the
shared storage manager in [4] is limited to simple put/get-
operations. TrustDBle thus extends our previous work [4]
with a secure execution engine that implements verifiable
transaction execution on shared databases while preserv-
ing the scalability of [4]. Verifiable transaction execution
means that the DBMS engine itself guarantees a correct (i.e.,
ACID-compliant) execution of transactions. For example,
to achieve isolation TrustDBle introduces a lock manager
that resides in a trusted execution environment and thus
guarantees correct serializable execution of multi-statement
transactions from different parties. In this work, we discuss
the main design choices of all involved components when
building a trustable DBMS and show first results from our
work on TrustDBle. This includes the aforementioned ver-
ifiable transaction execution engine, but also other compo-
nents needed to establish trust. For example, in many data
sharing scenarios it is important for a data owner/producer
to track who accessed data during which queries.

Outline. The remainder of this paper is organized as fol-
lows: The next section discusses the guarantees and require-
ments that a trustable data management system should pro-
vide. Then, we present our architecture of TrustDBle and
the main design choices to establish trust in DBMSs. After-

Alice Bob’s Telco

> Alice’s Home Provider
—
SET BobCharges.Charge=0 ..
SET CharlieCharges.Charge=0
WHERE Customer=‘Alice’

BobCharges CharlieCharges
| customer_| charge
5 Alice 2

Charlie’s Telco
Foreign Provider

Personal Data

. —
Alice

Alice

Figure 1: Shared DB of Two Telco Providers

wards, initial results of running a OLTP benchmark (Small-
Bank) simulating a typical data sharing scenario is shown in
our evaluation of TrustDBle. Finally, we conclude with the
discussion of related work and a summary.

2. PROPERTIES OF A TRUSTABLE DBMS

In telco scenarios, mobile phones of users are often be-
ing used outside the range of their home networks and can
also connect to an available cell network of another provider.
While this causes charges for users in different cell networks,
a user still pays her charges only to the telco provider of her
home network, who clears the debts of the user with the sec-
ond provider. Figure 1 depicts such a scenario where Alice
has a home provider (Bob) but was also using the network
of another provider (Charlie). Through the abstraction of
the shared database, Alice could not only settle her charges
with Bob, but also Bob could clear the debts of Alice with
Charlie using transactions on the shared database.

However, in a setup in which the involved parties do not
trust each other, it is required that the DBMS providing the
shared database abstraction guarantees that data can only
be accessed and manipulated as agreed by all parties (e.g., if
Alice clears her charges with Bob, Bob has to clear the debts
with Charlie based on the agreed terms of the mobile con-
tracts). Further, any data modification (this includes mali-
cious modifications) should be recorded in a tamper-proof
manner. For example, if Charlie manipulates the phone
charges of Alice to his own favor (e.g., by increasing his
charge state for Alice and decreasing Bob’s) it should be
possible for Alice to detect this malicious change using the
tamper-proof history of all changes in the DBMS.

To achieve such guarantees the following three criteria
must be met by a trustable DBMS:

Requirement 1 - Data Sovereignty. While multiple Telco
providers could use the same shared database, Alice should
be able at any time to control who has access to her (per-
sonal) data. For example, only the home provider can read
information such as the personal address.

Requirement 2 - Verifiable Processing. As shown in the
example, transactions are used to execute complex data ma-
nipulations that consist of multiple operations and access
multiple records. Especially, in a collaborative setting where
multiple parties control different parts of the data, it must
be guaranteed that all parties execute transactions in a cor-
rect and verifiable way. In this context, correct and verifi-
able execution means that a DBMS is able to prove that a
transaction was executed in an ACID-compliant way by all
involved parties. In the above scenario, for example, this
means that Alice’s settlement transaction is correctly exe-

cuted on both Bob’s and Charlie’s charge tables.

Requirement 3 - Auditable Storage. The existence of ver-
ifiable processing as described above, is often not sufficient
if one could potentially tamper with or remove data from
the DBMS after processing. For example, as mentioned ear-
lier, Charlie might tamper with the data to manipulate the
current state of charges to his advantage. Hence, auditabil-
ity requires that all information needed to validate how data
was updated over time must be tamper-proof. Further, data
management systems must provide new interfaces to make
databases easily auditable. This could be done by users di-
rectly or by additional applications or services.

3. ARCHITECTURE & KEY CONCEPTS

TrustDBle is a distributed database that is build around
the key requirements of a trustable DBMS as discusseed be-
fore. Similar to a traditional database, it offers users a stan-
dard SQL-Interface and provides ACID properties. How-
ever, it also guarantees sovereignty, verifiable processing and
auditable storage.

Figure 2 shows an overview of TrustDBle’s architecture.
Similar to our work in [4], we build a database layer on
top of blockchains as a storage layer. Thereby, TrustDBle
also makes use of sharding in the storage layer to enable
scalability. In this work, we extend the database layer with
a secure execution engine that enables verifiable processing
and sovereignty.

In the following, we provide more details on TrustDBle’s
different layers and explain how the previously mentioned
properties of a trustable DBMS are achieved.

3.1 Auditable Storage

TrustDBle’s storage layer utilizes blockchains as a per-
sistent, auditable storage backend. Blockchains enable us
to store data in a tamper-proof way and record modifica-
tions of the data on the blockchain. Thereby, as shown in
[4], database techniques such as sharding help TrustDBle to
overcome the scalability limitations of blockchains.

Despite sharding, we also aim to implement further op-
timization such as caching in the storage layer to speed up
data access. Caching will enable TrustDBle to treat the au-
ditable storage as another layer in the memory hierarchy of
the database. With the help of verifiable processing it can
be guaranteed that data is maintained in a tamper-proof
way in memory or on disk until it has been persisted to the
auditable storage.

3.2 Verifiable Processing & Data Sovereignty

On top of the auditable storage, we offer components for
verifiable transaction processing and sovereignty. In the fol-
lowing, we mainly focus on verifiable transaction processing
and only briefly touch on sovereignty.

Verifiable Processing. With verifiable transaction process-
ing we refer to two aspects. First, all parties involved in a
shared DBMS can only execute transactions which all par-
ties agreed on. Second, when transactions are executed, par-
ties can make sure that those transactions where executed
correctly (i.e., following the ACID properties a non-shared
DBMS would give).

One approach to achieve verifiable transaction processing
is to use smart contracts to implement the transaction pro-

Client

<SQL>

Database Layer Database Layer

|
|
1
1

Verifiable
Processing

Storage Layer
Caching-Layer

Storage Layer
Caching-Layer

i |

Anngesn g Avjigejess

Storage

I
i
|
J
:

Figure 2: TrustDBle Architecture

cessing logic, e.g., as done in [3]. However, we found that
this approach suffers from the same scalability limitations
as blockchains themselves and adds additional complexity
since new transactions logic needs to be re-implemented as
smart contracts.

To overcome these issues, we implement a secure transac-
tion processing engine outside the blockchain (i.e., on top of
the auditable storage) with the help of a Trusted Execution
Environment (TEE) (green box in Figure 2). In our current
prototype we use Intel Software Guard Extensions (SGX) to
provision the TEE. Intel SGX establishes TEEs as so called
hardware enclaves, that are protected by the CPU. Thereby,
the CPU provides the enclave with a special address space
that is only accessible by the trusted code inside the enclave.

One major limitation of SGX, however, is that it only
provides a small portion of protected memory. To overcome
this challenge, TrustDBle does not place all transaction exe-
cution components in the trusted environment. Instead, we
place only those components inside the TEE which are re-
quired to verify that the ACID properties have been fulfilled.
For example, to provide verifiable isolation, we only imple-
ment the lock manager (LockMgr) of our database layer in-
side the trusted environment.

We use two key criteria to decide which component to
implement inside the TEE. First, the component should
only maintain a small state inside the protected memory
region. In the case of the lock manager, for instance, we
only need to maintain the lock table of the lock manager in
the TEE. Second, verifiable processing must depend on the
correct behaviour of a node. As an alternative approach,
we employ verification protocols similar to [4] to verify the
correct behaviour of a component. This is for example used
to verify the correct behaviour of the transaction coordinator
(TxCo) component and achieve verifiable atomicity.

Data Sovereignty. Furthermore, we plan to use TEEs to
guarantee sovereignty. The key idea is that TrustDBle en-
crypts data inside the TEE and only provides authorized
parties access to the encryption key.

3.3 Scalability & Usability

Despite trust achievement being the core of TrustDBle,
we do not want to scarify scalability and usability. TrustD-
Ble achieves this with the help of two main ideas:

DB optimizations € interfaces: Scalability is achieved by
making use of classical database techniques, such as shard-

ing, distributed locking and caching. While these techni-
ques introduce new challenges such as cross-shard transac-
tions and cache-coherence, we want to address them without
compromising trust.

Further, we want to provide users with familiar database

interfaces and abstractions (e.g., ACID transactions and iso-
lation levels). This way, TrustDBle can be integrated in ex-
isting enterprise architectures and serve as drop-in replace-
ment for traditional databases that do not provide trust
guarantees.
Adaptivity € Flexibility: Also, we want to achieve usabil-
ity through adaptivity. As mentioned previously, TrustDBle
supports different auditable storage backends. Therefore,
TrustDBle can be used with any blockchain network that
users might already be familiar with. Moreover, we plan to
support connecting to local databases via an ODBC inter-
face. This way, users can run queries that target local and
TrustDBle’s data.

4. CURRENT STATE OF TRUSTDBLE

In the following, we report on the current state of Trust-
DBle and show our initial performance results of running a
simple OLTP benchmark on TrustDBle.

4.1 Implementation Details

TrustDBle is still in its early stage and we mainly focused
on verifiable transaction processing and not on data sover-
eignty so far. Our verifiable transaction processing engine
currently provides verifiable isolation and atomicity guaran-
tees (i.e., the A and I of ACID) which are based on a secure
locking scheme and an auditable two-phase-commit (2PC)
protocol for cross-shard transactions.

The secure locking scheme is implemented via sharded
lock managers that run inside the TEE of a TrustDBle node.
Only, transaction managers (TxMgrs) with a valid lock (i.e.,
signed by the LockMgr) are allowed to modify or access data.
Sharding the lock manager enables us to prevent the lock
manager from becoming a bottleneck. Availability, is achiev-
ed by persisting the state of lock managers to auditable stor-
age. This way, other nodes in TrustDBle can recover from a
lock manager fault. Moreover, our locking scheme supports
the execution of transactions under different isolation levels.
To that end, the trusted lock managers enforce that locks
are acquired and released according to the specified isolation
level.

Similarly, we utilize the auditable storage to log 2PC mes-
sages and detect or recover from a faulty transaction coor-
dinator. Thereby, local transaction managers apply a trust,
but verify strategy with respect to a transaction coordina-
tor: While the transaction coordinator is responsible to col-
lect and forward 2PC messages and decisions to local TxM-
grs, each local TxMgr also logs messages to a shared meta-
blockchain which all TxMgr can access. Messages in this
meta-blockchain are used to verify decisions of the transac-
tion coordinator. Similarly to our previous work [4] we make
use of deferred verification techniques to mask verification
in the case of no failures.

4.2 Initial Results

Since TrustDBle combines database, BC technology and
TEEs to overcome the limitations of blockchains, the fo-
cus of our evaluation is currently mainly on scalability. In
particular, we want to show that our approach to verifiable

400

350
300
250
200
150
100
50
e .

1/16 2/32 4/64 8/128 16 /256

Throughput (tx/s)

Number of Shards / Number of Clients
Figure 3: Scalability with the number of shards

processing can execute cross-shard transactions in a scal-
able way. To that end, we implement the Smallbank OLTP
benchmark [1] and measure the performance of TrustDBle
in different settings.

Figure 3 shows an experiment in which we increased the
number of participants in a TrustDBle network. Thereby,
the number of participants matches the number of shards,
since each node was responsible for a separate shard. We
further scale the number of clients from 16 to 256. Each
client runs an update heavy workload of 1000s of transac-
tions per shard under a read committed isolation level. All
nodes are running as virtual machines in Microsoft Azure
with 16 vcpus, 32 GB memory and Ubuntu 16.04 LTS as
operating system. Hyperledger Sawtooth 1.04 is used as
blockchain platform in the storage layer. This experiment
shows that TrustDBle can execute cross-shard transactions
in a scalable manner for a network with up to 16 nodes
and multiple shards. In future, we plan to perform a more
detailed evaluation and, e.g., study TrustDBle’s behaviour
for larger network sizes. Moreover, we will analyze other
scalability aspects (such as scalability with data size) and
evaluate TrustDBle’s behaviour under attacks.

S. RELATED WORK

Several other work makes use of TEEs inside databases.
EnclaveDB [7], for example, implements an entire signle-
node database with the help of a TEE. TrustDBle is a
distributed database, and extends the use of TEEs to a dis-
tributed setup. Further, EnclaveDB focuses on privacy and
integrity, but not on a collaborative setup in which multi-
ple parties share access to data. Further, all sensitive data
is stored inside the TEE and therefore EnclaveDB requires
support for large TEEs with hundred gigabytes of memory.
In contrast, TrustDBle uses TEE only to secure few critical
components of the system like the LockMgr.

Another area of related work are hybrid approaches that
combine TEEs with blockchains to address the performance
limitations of blockchains. Ekiden [2] uses a hybrid approach
to get confidentiality and use TEEs to improve smart con-
tract computation and scalability of the underlying block-
chain. It provides privacy, but lacks usability, since it im-
plements a new blockchain platform with custom interfaces
and programming abstractions. TrustDBle is rather a da-
tabase than a blockchain and provides standard database
interfaces (e.g., SQL) and abstractions (e.g., ACID transac-
tions and isolation levels). Another system using a hybrid
approach is Hyperledger Avlon[8]. It combines trusted ex-
ecution environments, such as Intel SGX, and blockchains.
Howerever, ACID guarantees are not provided and instead
it uses trusted oracles to offload certain computations from
a blockchain.

Further, Blockchain databases like Veritas [5] as well as
BigchainDB [6] aim to provide a similar abstraction of a
shared database as TrustDBle. However, they differ in how
they implement this abstractions. TrustDBle focuses on how
the complexity of existing blockchains can be overcome with
the help of an additional database layer, while relying on the
auditability and tamper-proofness characteristics of block-
chains.

6. CONCLUSION

We presented TrustDBle, which combines database, block-
chain and secure hardware technology to implement a trus-
table data management system. It extends our previous
work with a secure OLTP engine that implements verifi-
able ACID-compliant transaction execution on shared data
while preserving scalability. In this paper, we discussed the
properties that are required to build trustable DBMSs and
explained how these guarantees are implemented in Trust-
DBle. In contrast to native blockchains, TrustDBle is able
to fulfill these guarantees without scarifying scalability and
usability. Our initial experiments show that TrustDBle suc-
cessfully supports cross-shard transactions and allows us to
scale the performance of the system by increasing the num-
ber of shards.

7. ACKNOWLEDGEMENTS

This research work has been funded by the German Fed-
eral Ministry of Education and Research and the Hessen
State Ministry for Higher Education, Research and the Arts
within their joint support of the National Research Cen-
ter for Applied Cybersecurity ATHENE. We also thank Mi-
crosoft Research for providing us with Azure resources for
our evaluation.

8. REFERENCES

[1] M. J. Cahill et al. Serializable isolation for snapshot
databases. ACM Transactions on Database Systems
(TODS), 34(4):1-42, 2009.

[2] R. Cheng et al. Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant
smart contracts. In 2019 IEEE European Symposium
on Security and Privacy (EuroS P), pages 185-200,
June 2019.

[3] T. T. A. Dinh et al. Blockbench: A framework for
analyzing private blockchains. In Proceedings of the
2017 ACM International Conference on Management of
Data, SIGMOD 17, page 10851100, New York, NY,
USA, 2017. Association for Computing Machinery.

[4] M. El-Hindi et al. Blockchaindb: a shared database on
blockchains. Proceedings of the VLDB Endowment,
12(11):1597-1609, 2019.

[5] J. Gehrke et al. Veritas: Shared verifiable databases
and tables in the cloud. In CIDR, 2019.

[6] T. McConaghy et al. BigchainDB: a scalable blockchain
database. white paper, BigChainDB, 2016.

[7] C. Priebe et al. EnclaveDB: a secure database using
SGX. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 264-278, May 2018.

[8] The Linux Foundation. Hyperledger Avalon.
https://www.hyperledger.org/projects/avalon, 2020.

